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On the primary variable switching technique for
simulating unsaturated-saturated flows

H.-J. G. Diersch® & P. Perrochet?

YWASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
bCentre d "Hydrogéologie, Université de Neuchdtel, Switzerland

ABSTRACT

Primary variable switching appears as a promising numeri-
cal technique for variably saturated flows. While the stan-
dard pressure-based form of the Richards equation can
suffer from poor mass balance accuracy, the mixed form
with its improved conservative properties can possess con-
vergence difficulties for dry initial conditions. On the other
hand, variable switching can overcome most of the stated
numerical problems. The paper deals with variable switch-
ing for finite elements in two and three dimensions. The
technique is incorporated in both an adaptive error-con-
trolled predictor-corrector one-step Newton (PCOSN) itera-
tion strategy and a target-based full Newton (TBFN)
iteration scheme. Both schemes provide different behaviors
with respect to accuracy and solution effort. Additionally, a
simplified upstream weighting technique is used. Compared
with conventional approaches the primary variable switch-
ing technique represents a fast and robust strategy for unsat-
urated problems with dry initial conditions. The impact of
the primary variable switching technique is studied over a
wide range of mostly 2D and partly difficult-to-solve prob-
lems (infiltration, drainage, perched water table, capillary
barrier), where comparable results are available. It is shown
that the TBFN iteration is an effective but error-prone proce-
dure. TBFN sacrifices temporal accuracy in favor of accel-
erated convergence if aggressive time step sizes are chosen.

Key words: unsaturated-saturated flow, primary variable
switching, Newton technique, finite elements, time stepping
control, benchmarking, capillary barrier

1.1 Introduction

In the modeling of unsaturated-saturated flow pro-
cesses several alternatives exist for numerically solving
the governing balance equations with their nonlinear
constitutive relationships. The Darcy equation of fluid
motion and the fluid mass conservation equation form
the physical basis?. In the context of unsaturated flow
the basic formulation involves both the fluid pressure
head y and the saturation s as unknown variables. For
these two unknowns only one balance equation, the
basic Richards equation'?, is available. To close the
mathematical model one constitutive relationship in
form of the capillary pressure head-saturation function
is additionally needed to convert one variable to the
other (and vice versa). Consequently, the modeler has
to decide between primary and secondary variables.
Depending on such a choice, different modeling
approaches result which are mathematically equivalent
in the continuous formulation, but their discrete ana-
logs are different.

As a result, three forms of the unsaturated flow
equation can be derived: (1) the pressure-based (v -)
form, where the primary variable is the pressure head

FEFLOW | 9



the com-

| \ mon  saturation-
£ based and the
equivalent  water-content-
based forms of the Richards
equation are restricted to
unsaturated  flow  condi-
tions (s < 1) and homoge-
neous soils (parameters of
unsaturated soil properties
must be spatially invariant).

Notice,
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(or the hydraulic head), (2) the saturation-based (s -)
form, where the saturation (or the moisture content 6 )
is chosen as the primary variable, and (3) the mixed
(v —s -)form, where both variables are employed and,
in solving the discrete equation system, the pressure
head is actually used as the primary variable.

Each of the three different forms has its own advan-
tages and drawbacks. The v -based form can be used
for both saturated and unsaturated soils. The pressure
head variable is unique and continuous. Models of this
type have been extensively used in various
applications!318:22:23:30:32:33:36.37.3943:44 Byt it has been
shown!43145 that the y -based form can produce signif-
icant global mass balance errors unless very small time
steps are used. The v -based approach can be improved
if the derivation of the moisture capacity term is per-
formed by suited chord slope approximations in replac-
ing analytical derivatives as proposed by Rathfelder
and Abriola®®. However, the numerical differentiation
must be prevented if the pressure head difference falls
below a specific range and a proper treatment of the
derivative term is then required (for instance, resorting
to an analytical evaluation). Accordingly, chord slope
approximation does not appear as a general and suffi-
ciently robust technique. It shall fail under drastic
parameters and initial conditions. Difficulties of this
kind were reported by Paniconi and Putti*’.

Some of these difficulties are avoided when using
the mixed-form schemes which possess much better
properties with respect to accurate mass conservative
solutions. Celia et al.* solve the mixed form by a modi-
fied Picard iteration scheme. Within the iterative proce-
dure the pressure head is used as the primary variable
for the solution at a new iteration step. This mixed

Picard technique was successfully applied by Simunek
et al.*, Vogel et al*” and Ju and Kung? for different
situations. Fuhrmann'® and Lehmann and Ackerer?®
enhanced the mixed form by using a Newton iterative
scheme instead of the Picard iteration. Lehmann and
Ackerer?® obtained their best results for one-dimen-
sional problems with the mixed form combined with
both the modified Picard and the Newton method.
Again, the pressure head was chosen as the primary
variable.

Numerical schemes based on the s-form of the
Richards equation are restricted to unsaturated flow
conditions because the saturation variable is not unique
for saturated regions, where the soil-water diffusivity
goes to infinity and a pressure-saturation relationship
no longer exists. Additionally, the common transforma-
tion into the s -form (and the equivalent water-content-
based form) of the Richards equation is restricted to
homogeneous soils as thoroughly discussed by LaBolle
and Clausnitzer?’. Note further that the saturation is
basically a discontinuous variable. On the other hand,
Hills et al.?® have shown that such a saturation-based
algorithm can result in significantly improved perfor-
mances compared to pressure-based methods, espe-
cially when applied to very dry soils. To benefit from
the good convergence properties of the s -form for both
saturated and unsaturated conditions Kirkland et al.?®
suggest to use the saturation in the unsaturated zone
and the pressure head in the saturated zone. Unfortu-
nately, their approach is not sufficiently general. As
noted by Forsyth et al.'3 the scheme introduces compli-
cations for heterogeneous systems, is partially explicit
in time, and suffers from balance errors at the transition
between the saturated and unsaturated zones.



Recently, Forsyth et al.'3 introduced a powerful new
idea in the context of saturated-unsaturated flow simu-
lations. It is termed as the primary variable substitu-
tion, or primary variable switching technique, and
originates from multiphase flow modeling. It effec-
tively handles the appearance and disappearance of
phases®. In this approach, a full Newton method is
used where the different primary variables, namely sat-
uration and pressure, are switched in different regions
depending on the prevailing saturation conditions at
each node of a mesh. This technique was found to yield
rapid convergence in both the unsaturated and saturated
zones compared to pressure-based formulations.

In the light of Forsyth ef al.’s work'?, primary vari-
able switching appears as a promising technique to
speed up the overall solution process and to tackle dif-
ficult-to-solve unsaturated-saturated flow problems for
heterogeneous porous media. The present study fol-
lows these ideas. Modifications and improvements of
Forsyth et al.’s scheme consist of (1) a powerful pre-
dictor-corrector approach with first and second order
accuracy, (2) a one-step full Newton approach with
only one control parameter to manage the entire solu-
tion process in an adaptive time marching scheme, and
(3) a rigorous analytical derivation of the Jacobian of
the Newton method. In contrast to the predictor-correc-
tor solution control an aggressive target-based time
marching scheme, providing an effective but error-
prone strategy, is analyzed.

It will be shown that the primary variable switching
technique is the most general approach in which mixed
forms using either Picard or Newton techniques appear
as special cases. The primary variable switching tech-
nique is employed for standard 2D and 3D finite ele-

ments. However, the matrix assembly procedure is
altered for finite elements depending on the occurrence
of primary variables. An upstream weighting scheme is
introduced for both structured and unstructured meshes
of 2D and 3D finite elements. The paper benchmarks
these various schemes by means of selected applica-
tions to verify the promised efficiency of primary vari-
able switching. Moisture dynamics in homogeneous
and layered soils with dry initial conditions, deemed
’tough’ infiltration and drainage problems, and capil-
lary barrier simulations under extreme parameter con-
trasts and very dry initial conditions are studied. Both
agreements and discrepancies are found with previous
results presented by Celia et al., van Genuchten*,
Kirkland et al.?%, Forsyth et al.'3, Webb*®, and Forsyth
and Kropinski'#. Further comparative studies for find-
ing the ’best’ solution strategy in practical modeling of
unsaturated-saturated flows are required.

1.2 Basic Equations

The mass conservation equation of a fluid in a vari-
ably saturated media? is given by

So~s(w)aalt+g%ﬂ+v.q -0 (1-1)

The fluid motion is described by the Darcy equation
written in the form

q = —K.(s)K(Vh+ye) = -K.(s)K[Vy + (1 +y)e] (1-2)

In eqns (1-1) and (1-2),

h = wy +z, hydraulic (piezometric) head;
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v pressure head, (v >0 saturated medium, vy <0
unsaturated medium);

s(w) saturation, (0<s<1, s = 1 if medium is satu-
rated);

g  Darcy flux vector;

z  elevation above a reference datum;

t time;

S, = ey +(1-¢)Y, specific storage due to fluid and
medium compressibility;

¢  porosity;

y  fluid compressibility;

Y  coefficient of skeleton compressibility;

K (s)relative hydraulic conductivity (0<K, <1,
K, =1 ifsaturated at s = 1);

K tensor of hydraulic conductivity for the saturated
medium (anisotropy);

x  buoyancy coefficient including fluid density
effects;

e  gravitational unit vector;

O  specific mass supply;

Constitutive relationships are additionally required (1)
for the saturation s as a function of the pressure (capil-
lary) head v, as well as its inverse, the pressure head
v as a function of the saturation s, and (2) for the rela-
tive hydraulic conductivity K, as a function of either
the pressure head y or the saturation s . The following
empirical relationships are used for the present
study?*47:

van Genuchten-Mualem parametric model:

1
for wy<y,
(1-3)

m
se =1 [1+]ayl"]

1 for y2y,

1 Lm 2
K, = sez{l —{1—% } } (1-4)
Brooks-Corey parametric model:
1
- for y<-1/a
Se = 9 loyl (1-5)
1 for y2>2-1/a
K, =5, (1-6)
with the effective saturation
N}
p
= 1-7
Se Py -7
in which
s, effective saturation;
s, residual saturation;
s, maximum saturation;
y, air-entry pressure head, y,<0;
o curve-fitting parameter;
n  pore size distribution index, n>1;
m=1-1/n, curve fitting parameter (Mualem
assumption);

K = 2/n+1+2, curve-fitting parameter;
[ pore-connectivity parameter;

In combining eqns (1-1) and (1-2) a general mixed
form of the Richards equation naturally results, viz.,

Ris, ) = So's(“’)afa_“;”asfgy)* (1-8)

“VAKOK[Vy +(1+7)e]} -0 =0



which has to be solved either for w (and %) or s. The
retention curves (1-3) or (1-5) can be used to convert
one variable to the other (and vice versa), viz.,

s = fly)

~1 (1'9)
v =1 (s)

1.3 Finite Element Formula-
tion

Let Q= ®” and (0, T) be the spatial and temporal
domain, respectively, where D is the number of space
dimension (2 or 3) and T is the final simulation time,
and let T' denote the boundary of Q, the weak form of
the mass balance equation (1-1) can be written as

JwSos(w)%Eg-i-.[ws%—j—.[q-Vw = J‘wQ—qun (1-10)
Q Q Q Q r

and with eqn (1-2) as

J.WSOS(\V)%{ + J.ws% + J.VW' [K.(s)K-Vy] =
Q Q Q (1-11)

= JWQi[anf .[VW' [K,(s)K - (1 +7)e]
Q r Q

where w is a test function and ¢, corresponds to the
normal fluid flux directed positive outward on T .

In the finite element context a spatial semi-discreti-
zation Q" of the continuum domain Q is achieved by
the union of a set of nonoverlapping subdomains Q,,

the finite elements, as

o=0'=,0, (1-12)

e

On any finite-element domain Q,, the unknown vari-
ables and dependent coefficients are replaced by a con-
tinuous approximation that assumes the separability of
space and time, thus

Y, 0=y (1) = Ny ()

, (1-13)
S(x,‘, f=s (xia t) = N](x,')SI(t)
and, respectively,
h
K.(x,)=K,.(x,1t) = N,(xi)KrI(t) (1-14)
where i = 1,...,D represents coordinate indices,

I =1,...,M designates nodal indices, M is the total
number of nodes, N, is the nodal basis function, called
the trial space, and x, are the Cartesian spatial coordi-
nates. Note that the summation convention is used for
repeated indices. In our study the basis functions N,
are based on C; (continuous) piece-wise polynomials
that are piecewise-continuously differentiable and
square integrable (but whose second and higher deriva-
tives need not to exist).

Using the Galerkin-based finite element method
where the test function w becomes identical to the trial
space N, eqn (1-11) leads to the following global
matrix system of M equations

FEFLOW | 13



14 | White Papers - Vol. |

O(s)-W+B-§+K(s)-W—F(s) = 0 (1-15)
with its components written in indicial notation
0,,(s) = ZJN,SUS(\V)SU (1-16a)
e Q,
By =3 [Nedy, (1-16b)
e Q
- N, N,
Kys) =3 | oK 9K (1-16¢)
e Q ! J
Fi(s) = ZJ-NIQ*ZJ-NI%
e Q e,
(1-16d)

oN,
-3 j KO (1+0)¢;
e Q !

where the subscripts /,J = 1,..., M denote nodal
indices, i,j = 1, ..., D are spatial indices of the Carte-
sian coordinates, and §,, is the Kronecker operator.
The superposed dot means differentiation with respect
to time ¢. Nonlinearities are shown in parentheses.
Note that all matrices connected with time derivatives
are lumped. This is virtually mandatory for unsaturated
problems to ensure smooth and non-oscillatory
solutions*?’, The system of equations (1-15) is highly
nonlinear due to the functional dependence of the con-
stitutive relationships (1-3)-(1-6) for the saturation and
the relative conductivity.

The discretized form (1-15) of the Richards equa-
tion is based on the mixed formulation (1-8), where the

fluid and medium compressibility S, relates to the
pressure head y . For unsaturated conditions the com-
pressibility effects are usually neglected. However, we
should mention that the explicit introduction of the S -
term leads to a non-conservative form with respect to
the fluid and medium compressibility. For unsaturated
conditions (at an arbitrary negative pressure) the dis-
cretization (1-15) is unconditionally mass-conservative
for a vanishing S -term only.

1.4 Temporal Discretization

For stability reasons only implicit (A-stable) time
discretizations are appropriate for the present class of
problems. Otherwise, two-step techniques have to be
preferred for multidimensional problems. For the
present analysis the fully implicit backward Euler (BE)
scheme with a first-order accuracy and the semi-
implicit nondissipative trapezoid rule (TR) with a sec-
ond-order accuracy are enforced.

Denoting the time plane by the superscript n, the
implicit form of eqn (1-15) reads

n+l, o MT

)Y

n+1 n+1

0 "y Bk Ly
(s $ (s ) (1-17)
n+1

-F(s* )=0

where the time derivatives are approximated, for the
BE scheme, by

R \Ijrz+17\Pn ot sn+17 n
Wy = — § =

2 (18
At, At, (1-18)



and for the TR scheme, by
Cntl .
v 2t oy
At,
(1-19)
sn+1 _ i(sn+17sn)75‘n
At

n

Inserting eqns (1-18) and (1-19) into eqn (1-17) results
in

n+1
Rn+1(‘{,’s)(00§t )+K(sn+l)]_‘{,n+l

n

+§_Bi'sn+l
L (1-20)
n+1 [ '")

_ o — +(oc—

oi" Y (At Y (o—1)¥

n

—B~(ft—sn+(c—l)s'n)—F(sn+l) =0
n

where the weighting factor ¢ € (1,2) is unity for the
BE scheme and 2 for the TR scheme. It represents a
variety of unsaturated flow models, including the vari-
able switching technique, in the most general discrete
form. As seen in eqn (1-20) the second-order TR
scheme is readily available with little extra work. It
only differs from the first-order BE scheme by the
. n n . .
acceleration terms ¥ and s at the previous time
plane, and by the factor 2/A¢, instead of 1/A¢, .

1.5 Primary Variable Switch-
ing Methodology

To solve the basic matrix system (1-20) one has to
decide which variable of w(#) or s should be primary.
Commonly, the selection of the primary variable is
done in a static manner and results in a *fixed’ y -, s-
or y-s-modeling strategy, including the limitations
and drawbacks discussed above. In contrast, primary
variable switching is done dynamically depending on
the current flow characteristics.

Let X, be the primary variable associated with node
1. X, can be either y, or s;. Accordingly, we can con-
sider X as a vector containing the different primary
variables in the solution space Q" as

Xe(Y¥,s) (1-21)

Hence, the matrix system (1-20) can be written in the
form

n+1

R'x)=0 (1-22)
and solved for X, (/ = 1, ..., M).
The solution of the nonlinear equations (1-22), i.e., the
vector of primary variables X, is performed by the

Newton method, viz.,

JX(‘-[”HI ”H)AX:H _ *RZH(W’S) (1-23a)

T ’S‘E

with the increment
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Notice, the differ-
entiation in form of
(1-23c) does not
restrict the approach to
invariant  soil  properties,
because there is never a
derivation with respect to a
spatial coordinate. This is a
distinct advantage of the
variable  switching  tech-
nique, which can solve the
problem even in the satura-
tion variable (if s < 1) for
heterogeneous soil parame-
ters. In contrast, common
formulations in the satura-
tion (or water-content) form
are restricted to homoge-
neous soil characteristics®’.

[
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+1 +1 +1
AXD =X X,

T

(1-23b)

and the Jacobian J* expressed in indicial notation as

n+l n+l

CANTAD
ox;;!

n+1
n+tl n+1 aR]

TS =

(1-23¢)

where © denotes the iteration number.

The primary variable at any node / is switched for
every Newton iteration t by using the following
method'3:

IF (5%, ' > tol,) THEN

Use \yf,ﬂ as primary variable at node / and solve
the Newton statement (1-23a) as

n+tl

=-R; (¥.9)

n+tl

)A\Vrj

n+l n+l
Tt 28

Iy (1-24)

ELSE IF (s","' < t0l,) THEN

Use sflﬂ as primary variable at node / and solve
the Newton statement (1-23a) as

n+1

)As_;

n+1

= R (Y, s)

n+l n+l
5

T
ELSE

(1-25)

Do not change primary variable for the node / and
solve eqn (1-24) or eqn (1-25) according to the hitherto

selected primary variable (v, 'or st M

ENDIF

The Newton approach requires continuous derivatives
of the Jacobians J" and J* with respect to the pressure
head y and the saturation s, respectively. In the
present finite element method the variables y and s
are approximated in a continuous manner according to
(1-13) if occurring as primary variables and the Jacobi-
ans are thus derivable. On the other hand, variable
smoothing is necessary if one determines secondary
variables from primary variables using the retention
curves (1-3) or (1-5) under heterogeneous conditions.
To do so, element material quantities have to be aver-
aged at nodal patches. In the context of the finite ele-
ment method, the arithmetic mean appears as a natural
smoothing technique and will be preferred here. Such a
smoothing technique is analogous to that of deriving
continuous Darcy fluxes in heterogeneous porous
media as described in Diersch and Kolditz'°.

The switching tolerances tol, and tol, have to be
appropriately chosen. The following requirements are
necessary
(1-26)

tolf< 1 tolf;t tol,,

The Jacobians J* can be computed either numerically
or analytically. The analytical method is more
efficient?® and will be preferred in the present study.
While a perturbation scheme such as the one used by
Forsyth et al.'3 requires a pass of 2M evaluations, ana-
lytical derivatives require only a pass of M evaluations.

The elements of the corresponding Jacobians
JY s of eqn (1-24) and S(s” LW of

eqn (1-25) are summarized in the Appendices A and B,
respectively. Otherwise, the residual RZ ,+ 1(‘I‘, s) at the
iterate T and node / is independent of the actually used



primary variables X, and is computed according to eqn
(1-20) in the following way

" (1-27)
+1 (e} -n
= 00 () (o= DY)

n

(9 . +1
+ B,J~(A—ts;+(071)s3)+F[(sZ )
n

It has to be noticed here that the variable switching
is generally nodewise. This carries consequences in the
finite element assembly technique used to construct the
Jacobian J. Traditionally, the assembling process is
performed by

Ty =S [ b (1-28)
e Q,

in an elementwise fashion where the nodal contribu-
tions are added in the global matrix. This can no longer
be done if the primary variables appear in a mixed
manner in a mesh. If the primary variables are not of
the same kind at a current stage, the following node-
wise assembly is required

J}‘J=ZZ [t (1-29)

I een Q

e

where the contributions from an adjacent element patch
n, to anode / are added in the global matrix.

The primary variable switching technique can be
considered as a most general formulation in which pre-
vious solution strategies are encompassed as special
cases. Taking the pressure head v as primary variable,
omitting for simplicity the compressibility term O(S,)
and considering only the fully implicit BE scheme, we
obtain from eqns (1-24) and (A1)

+1 n+1 +1
[KW,.HaK(sZ ), B 0s;  OF(s, )j( -

+ — -¥
1
T a‘{‘ZJrI Atn a\Ij:Jrl a\{}:+l Tt
=7K\']JI_:+17A£t(sl,z+17sn)+F(S:+l)
0 (1-30)

which is the Newton scheme of the mixed v — s -form
of the Richards equation'®?8, Furthermore, the modi-
fied Picard scheme for the mixed y—s-form of the
Richards equation* can be deduced from eqn (1-30) by
dropping the partial Jacobians of the 2nd and 4th term
of the left-hand side of eqn (1-30), yielding

(K+£_Cn+l)qln+l - B g —lé-(s:H—s")JrF(s

T T+1 T Tt
Atn Atn A n

(1-31)

with the moisture capacity (A7)
C:H =ost" ty o, “! Finally, the common v -based

form is easily obtained from eqn (1-31) if the saturation
terms of the right-hand side are expressed by their

derivatives with respect to the pressure head:
sn+1_sn _ C:+1(\Iln+l \Pn)

T T -
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n+l

B +1 +1 B +1
(K+—c’; )w” =A—tc’j Y+ F(sT ) (1-32)
n

T+ 1

While the Newton scheme applied to the primary
variable switching technique in eqns (1-24) and (1-25)
and to the mixed form (1-30) is quadratically conver-
gent, the Picard-type solutions (1-31) and (1-32) pro-
vide only a linearly convergent accuracy. One notes
here that the matrix systems of the Newton method (1-
24), (1-25) and (1-30) are always unsymmetric, while
the Picard schemes in eqns (1-31) and (1-32) preserve
symmetry of the resulting matrix systems.

The derivation of the family of unsaturated flow
models presented here clearly differs from the Newton
approach put forward by Paniconi et al.3¢, Paniconi and
Putti*” and Miller et al.’® who started from a  -based
approach in a formal mathematical manner. As a result,
the second order derivatives of the saturation relation-
ship arising in the computation of the Jacobian appear
somewhat questionable from a physical point of view.

1.6 Solution Control

1.6.1 Adaptive
one-step Newton
marching scheme

predictor-corrector
(PCOSN) time

Generally, the control of the solution of the resulting
highly nonlinear matrix systems (1-24) and (1-25) is a
tricky matter. Both the choice of the time step size Az,
and the iteration control of the Newton scheme signifi-
cantly influence the success and the efficiency of the
simulation. Given that the overall solution process

should be performed with a minimum of user-specified
control parameters, a fully automatic and adaptive time
selection strategy is useful for the present class of prob-
lems. In this work a predictor-corrector time integrator
is used which was originally introduced by Gresho et
al.'?, subsequently improved by Bixler®, and success-
fully employed for various buoyant groundwater flow
problems>!?. It monitors the solution process via a
local time truncation error estimation in which the time
step size is cheaply and automatically varied in accor-
dance with temporal accuracy requirements. It has been
proven to be a cost-effective and robust procedure in
that the time step size is increased whenever possible
and decreased only if necessary.

In the primary variable switching strategy the New-
ton method plays a central role. The control of the iter-
ation process with a variable time step size can be
combined in the following unified procedure. It is well-
known that the Newton scheme converges (with a qua-
dratic convergence rate) if (and only if) a good initial
guess of the solution is available. In transient situations
this is feasible with a proper adaptation of the time step
size to the evolving flow characteristics. At a given
time stage, a good initial guess of the solution can
always be obtained provided the time step is suffi-
ciently small. Now, it can be argued!” that the required
degree of convergence has to be satisfied in just one
full Newton iteration per time step. To do so, the time
discretization error 8 can also be used as the Newton
convergence criterion for the iterate t. This is called
the one-step Newton method where & can be seen as an
overall error parameter aiming at keeping the time dis-
cretization error small.

For the primary variable switching technique the



proposed PCOSN time marching scheme consists of
the following main working steps:

STEP 0: Initialization
Compute the initial acceleration vectors LI‘ and s
from eqn (1-17) as

[0(°)+ BC']- ¥ = k() - W'+ (s (1-33)

and with
L=c v (1-34)

where €” is the initial moisture capacity vector accord-
ing to eqn (A7), 9" and s° are the initial distributions
of the pressure head v and the saturation s, respec-
tively. Furthermore, we choose an initial time step size
Aty .

STEP 1: Predictor solutions
Explicit schemes of first and second order accuracy in
time provide appropriate predictor solutions for the pri-
mary variable X" "' (either ¥" "' or 5" ') at the new
time plane n + 1 . We use either the first-order accurate
forward Euler (FE) scheme

X=X A X (1-35)

or the second-order accurate Adams-Bashforth (AB)
scheme

At,
At

X”+1 X”+—[( +

n-1

Note here that, since X s required, the AB formula
cannot be applied before the second step (n = 1). The
predlctlon has to be started with the FE procedure,
where X" is available from eqns (1-33) and (1-34). The
subscript p indicates the predictor values at the new
time plane n+ 1. In the one-step Newton procedure
(i.e., T = 1) the resulting nonlinear matrix equations
(1-24) and (1-25) are linearized by using the corre-
sponding predictors. Accordingly, the Newton iterates
are taken as
n+1 n+1 n+1 n+1

LSRR sith=s) (1-37)

STEP 2: Corrector solutions

Depending on the primary variable switching criteria
stated above the following matrix systems (1-24), (1-
25) arise

A +1 +1
! n I’l I‘IJ — I‘I
T, Ay, (¥, s)
(1-38)
ntl _ n+1 n+1
Ay, =vy; - ‘VpJ
to solve the pressure head ¥" 'or
J[J(\Pn+1 n+1)AS‘Z}r1 _ n+1(\P )
(1-39)
n+tl _ n+l n+1
As =Sy S,y

to solve the saturation s" ', where the (predicted)
residual R”"' in eqns (1-38) and (1-39) is also evalu-
ated by using the predictor solutions ‘PIT ' and sZ+1
applied to the t -terms in eqn (1-27). Note that the pre-
dictor of the FE (1-35) is used for the BE (¢ = 1) and
that the predictor of the AB (1-36) is used for the TR
(o = 2) in eqns (1-38) and (1-39). Accordingly, the
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predictor-corrector solutions will be called FE/BE and
AB/TR scheme, respectively.

STEP 3: Updated accelerations
In preparing the data fg{ the next time step the new
acceleration vectors X' are computed for the FE

o Lxtttox

AT (1-40)
by using the BE (1-18) and for the AB

Sl i +1 Ly

X - Atn(Xn X=X (1-41)

Atn—l [Xn+l—an+ AIjn [Xn—anj

At,+At, | At At + A, AL,

by modifying the TR (1-19) according to Bixler’.

STEP 4: Error estimation

The local truncation error of the approximate equations
depends on the predicted X “! and corrected X"
solutions. For the FE/BE and the AB/TR the error esti-

mation yields!”

= xT X (1-42a)
with
% for FE/BE
¢ = lm for AB/TR (1-42b)
+ n—l)
31+

Appropriate error norms are applied for the vector
. Commonly, the weighted RMS L, error norm

| M RRIp 172
||dn+l||L2 _ [_[Z I ]] (1-43)
M|
7 X
and the maximum L error norm
la" M., = == max|d; ™| (1-44)

max

are chosen, where X:'nle is the maximum value of the
current primary variable detected at the time plane
n+ 1, and used to normalize the solution vector.

STEP 5: Tactic of time stepping

The new provisional time step size can be computed by
means of the error estimates (1-42a), (1-43), (1-44), the
current time step size At , and a user-specified error
tolerance § as'’

( 5 jl/k
Aty = At|
e,

ne

2 for FE/BE

2 = { (1-45)
3 for AB/TR
_ { 2 for RMS error norm
P © for maximum error norm

The following criteria are used to monitor the progress
of the solution:
1. If



At > AL (1-46a)

n+1=

the current solution X" ' is accurate within the error
bound defined by & and the increase of the time step is
always accepted.

2. If

AL, <At <A, (1-46b)

where ¢ is typically 0.85, the solution X"™' is
accepted but the time step size is not changed, i.e.,
At, ., = At,.

3. If

At, . <CAt, (1-46¢)

the solution X" ' cannot be accepted within the
required error tolerance & and has to be rejected. The
proposed new time step size (1-45) is reduced accord-
ing to’

2

At

reduced _ n o

Atn = At_[”’7+—1J (1-46d)
n+1\|ld Ll

p

and the solution is repeated for the time plane n + 1
reduced

with Az, = Ar, .

It is important to note that the error tolerance § is the
only user-specified parameter to control the entire solu-
tion process. The starting-up phase is still influenced
by the initial time step Az, which should be kept small.
In practice two further constraints for the time step size

have shown to be useful. Firstly, the time step should
not exceed a maximum measure, i.e., Az, < A" Sec-
ondly, the rate for changing the time step size
E = At,, /A, .has also to be 11m1t.ed, Le., ESEWX
(say 2 or 3). This can help prevent inefficient oscilla-

tions in time step size prediction.

The one-step Newton method embedded in the pre-
dictor-corrector schemes (FE/BE or AB/TR) requires
the construction and solution of just one linear(ized)
system per time step. The unsymmetric linear systems
(1-38) or (1-39) are solved via a BiCGSTAB iterative
solver*® preconditioned by an incomplete Crout decom-
position scheme. The preconditioning process automat-
ically provides a suited scaling of the final matrix
system. Otherwise, taking the predictor solutions (1-
35) or (1-36) the derivative terms (A7) and (B7),
namely the moisture capacity and inverse moisture
capacity terms, respectively, are easily computed by
chord slope approximations as summarized in Appen-
dix C.

It should be emphasized that the proposed PCOSN
technique controls the overall temporal discretization
error via the tolerance &. At the same time, & is
enforced as a convergence limit for the Newton
method. This error-controlled solution strategy is very
different from the target-based time step selection tech-
nique which is discussed next.

1.6.2 Target-based  full
(TBFN) time stepping scheme

Newton

Such type of solution strategy is often used in mul-
tiphase flow simulation'??*, Applying this technique to
unsaturated flow problems Forsyth ef al.'> reported a
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significant increase in performance compared to com-
mon (Picard iteration) solution strategies (e.g., up to 10
times faster). In that work the only criterion is the New-
ton convergence for a possibly large time step size. The
step size is determined from a desired change in the
variable per time step given by user-specified targets.
The target change parameters are often chosen very
large to get aggressive time step sizes. The procedure is
carried out in the following steps:

STEP 1: Perform Newton iteration

With a given time step size Az, at time plane » (at ini-
tial time we start with a sufficiently small Az,) we
solve for the new Newton iteration t + 1 either

n+l n+l n+1 n+1

JYCPLT ST AP = R (W, s)
+1 +1 +1 (1-47)
n n n
A\Pr = \P1:+17\Pt
for the pressure head ‘P:I; or
Jy(‘{’:+l’sz+l)As;z+l _ —RZ+I(LP,S)
(1-48)
n+tl _ n+l n+1
As. = s .18,

for the saturation s'gill as primary variable according
to the switching criteria stated above. The Newton iter-
ations are repeated until a satisfactory convergence is
achieved, such as

n+1

&, <5 (1-49a)
with
=X -x (1-49b)

and where Hd;' i 1HLp can beusedasaRMS (p = 2, eqn
(1-43)) or maximum (p = o, eqn (1-44)) error norm.

STEP 2: Tactic of time stepping at successful Newton

convergence

If Newton iterations have converged a new provisional

step size Az, , , can be computed in the following way:
At, ., = E-At (1-50)

n+1 n

[1]

where = is a time step multiplier. The latter is deter-
mined by the minimum ratio of prescribed target
change parameters DXWISH (DSWISH for the satura-
tion s" ' and DPWISH for the pressure head ¥" ')
to the Newton correction, namely

DXWISH } (151

+1 Xn’
1

T+ 1,1

= = min
I

Additionally, it can be useful to constrain both eqn (1-

50) by a maximum time step size (Az,, | <At,,. ) and
eqn (1-51) by a  maximum  multiplier
(E<E, .= LL..,5).

STEP 3: Tactic of time stepping if Newton iteration
fails

The convergence criterion for the Newton method is
given by eqn (1-49a). If the Newton scheme does not
converge within a maximum number of nonlinear itera-
tions t <ITMAX (say 12) the current time step has to
be rejected. A reduced time step size is then computed
by



reduced

AL = Ar /TDIV (1-52)

and the solution process is restarted for the current time
plane n+1, but with Ar, = Atfduced. The time step
divider TDIV is usually 2 (sometimes a larger value, e.
g. 10, can be useful). Additionally, the behavior of the
residual R] i I(‘{’, s) can be monitored during the itera-
tions. Taking a RMS norm of the residuals at the cur-
rent HRZ i ﬁLz and previous stages HRZjll H L, the
iterative process is interrupted as soon as the residual
stops to decrease HRZ o ‘ L= ‘RM ! 1, at a certain iter-

-1
ate (t>1).

In the TBFN technique the step size is controlled so
that the Newton corrections hit, or are less than, the tar-
get change parameters DXWISH. It makes use of the
fact that the formulation is mass-conservative for an
arbitrary implicit time step size. Indeed, this aggressive
time stepping control can be very efficient in finding
steady-state solutions, if such solutions exist. But in
transient situations, it appears as an error-prone strat-
egy in a potential lacking of temporal accuracy, regard-
less of the good mass-conservative properties of the
scheme. In the examples shown below we shall see
partly significant differences between the results of the
PCOSN and TBFN schemes.

1.6.3 Convergence criterion

An important aspect of the iterative solution via the
PCOSN and TBFN schemes is the choice of an appro-
priate convergence criterion. The one-step Newton
approach of the PCOSN assumes a deviatory (change)
error measure ||d" i 1“ £, which is a function of

X" X0, of eqns (1-42a), (1-43) and (1-44).
The advantage of the PCOSN is that it controls both the
truncation and the iteration errors by only one user-
specified tolerance & . To make the TBFN comparable
to the PCOSN scheme we use an equivalent deviatory
error norm ‘d:HHL] as a function of (X:Ill —X:H),
cf. eqns (1-49a) and[(1—49b). Such a convergence crite-
rion represents a standard test and is commonly used
for Newton methods!'!.

Other convergence criteria can sometimes be useful.
Instead of the deviatory error estimate de+ 1” ., the
residual HR:+ 1” 1, may be directly controlled. It ;epre-
sents a direct measure of the global mass balance error
after terminating the Newton iteration. For instance one
can enforce the condition

where a second tolerance 3, is introduced and an
appropriate normalization of the residual (here with
respect to the external supply F' i 1) is required. Such
a convergence control would mean that the one-step
Newton approach is no more applicable and that the
predictor-corrector scheme has to be controlled by both
8 and &,, where 3 measures the temporal discretiza-
tion error and 8, measures the global mass balance
error. More than one iteration (we need at least two
steps) is then required per time step, making the predic-
tor-corrector technique less attractive. Unlike the
PCOSN, the TBFN technique has only one control
statement (1-49a) and, of course, it is easy to replace
(1-49a) by (1-53).

R <a Pl (1-53)

In the present study we do not use the condition (1-
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53). We shall show that the Hd;'+ 1” 1, €ITOr norms are
sufficient, at least for the examples considered, to
ensure the overall evolution of the nonlinear process
under a small global mass balance error ‘R:H L
Additionally, we shall observe ’R:H L

in our exam-
ples and give estimates of the RMS-based integral
(total) mass balance error TMBE(T) at the final simula-
tion time 7 in the form

T
[ IR0, de

TMBE(T) = =2

[ 1@, ar
t=0

(1-54)

Eqn (1-54) measures the ’accumulated loss’ of mass
with respect to the total external supply over the entire
simulation period (0, 7). It is an important error mea-
sure to assess the results of long-term simulations, e.g.,
simulations where small residuals are accumulated
over long time periods.

1.7 Upstream Weighting

Forsyth and Kropinski'4 pointed out the necessity of
upstream weighting in unsaturated-saturated problems
to avoid spurious local maxima and minima at coarse
mesh sizes. Monotonicity considerations were applied
to find appropriate evaluation points for the relative
conductivity terms depending on the sign of potential
differences along discrete spans (element edges).
While a central (standard) weighting results from an
average of the relative conductivity at the centroids of
elements, an upstream weighting is obtained if the

evaluation point is shifted upstream in an element. This
technique is different from upwind methods commonly
used for convection-diffusion equations’.

Different approaches exist in unsaturated flow mod-
eling for the representation of material properties. For-
syth and Kropinski'¥, Simunek et al** or Oldenburg
and Pruess®* prefer a nodal representation, where mate-
rial interfaces do not coincide with element boundaries
and elemental properties have to be averaged. In such
an approach upstream weighting points for evaluating
the relative conductivity K, can be directly located
between adjacent nodes. Such schemes have proven to
be unconditionally monotone!*.

The present upstream weighting method is based on
an elemental representation of material properties. We
use the following simple procedure to find appropriate
upstream weighting points at an element level. In the
examples studied below the usefulness and success of
this technique will be shown. A theoretical proof of
unconditional monotonicity is, however, beyond the
scope of this paper.

A central weighting is equivalent to the influence
coefficient method using a linear combination of nodal
parameters according to eqn (1-14), where the nodal
basis functions N,(x;) = N,(&, 1, () are evaluated at the
element centroid (§ = n =¢ =0); &, n,and ¢ repre-
sent local coordinates of the finite element. Instead of
using the central position, we select an upstream posi-
tion (&, n, ¢) for computing the relative conductivity
via eqn (1-14). The evaluation point (&, 7, ¢) is used
for Gauss integration of the matrix terms (1-16¢) and
(1-16d) and is similar to the Gauss-point-based upwind
technique proposed by Hughes?!. To determine the



upstream local coordinates (é, 1~1, i) in 2D and 3D ele-
ments the following method is applied.

Based on the predicted pressure head ‘P;” (or
‘{’:H for the TBFN scheme) a specific flux can be
computed at a central position of an element e

n+1 n+1

vl = VNG0,0,0) - [y, T+ (1 0)e]  (1-55)

and, the trajectory of the vector vZJr1 can be easily
found. Along the trajectory, in the upstream direction,
the upstream position (é, ﬁ (~;) is set at the intersection
with the element border (Fig. 1.1).

Figure 1.1 Upstream local coordinates (%, T~1)
in a 2D finite element.

For the element level e the relative conductivity
K.(x,1) = \K:(x, 0 is evaluated at the upstream point as

e

Ki(x, 1) = Ny(& . OKS,(8) (1-56)

where K',(#) represents the nodal relative conductivi-
ties computed as a function of the nodal saturation

s,(t) (or pressure head () ). With the upstream point
(&, ¢) the relative conductivity K. is evaluated only
along element edges. For instance, considering the situ-
ation in Fig. 1.1 for a 2D isoparametric finite element,
n is -1 and K7, from eqn (1-56), becomes independent
of nodes 3 and 4, viz., K& = [(1-&)KS, + (1 +E)K,]/2.

1.8 Simulations

The following examples are used to benchmark the
primary variable switching technique combined with
the PCOSN time marching procedure against tradi-
tional and alternative solution strategies. Its efficiency
is demonstrated by means of applications where other
schemes fail or run eventually into difficulties. The
control parameters enforced in these examples are the
primary variable switching tolerances (1-26)"3

tol, = 0.99
(1-57)
tol, = 0.89

and the tolerance 8 encompassing both the time trun-
cation error measure and the Newton convergence cri-
terion is

§=10" (1-58)

using the RMS error norm (1-43) as the default options.
Exceptions will be indicated. Since the proposed
schemes are mass-conservative the balance error is a
function of the error tolerance &. This parameter is
very important, but its significance with respect to
mass balance should not be over-interpreted. As
already pointed out by Kirkland et al.?® a good mass
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balance does not mean that the distribution of mass
across the system has been correctly evaluated. This
will be shown in the case of the TBFN time stepping
strategy where the following aggressive target change
parameters

DSWISH
DPWISH

0.4

(1-59)
4000 kPa

will be used'?. In the TBFN solution technique tempo-
ral nonlinear discretization errors may occur due to a
fast-but-coarse time stepping. The total mass balance
errors will be quantified by the TMBE(T) estimate (1-
54).

The large target change parameters (1-59) were
used by Forsyth et al.'’ to illustrate the robustness of
the variable switching technique. They did not intend
to consider the time truncation errors arising for the
large time step sizes generated. Clearly, employing
smaller target change parameters would lead to smaller
time step sizes and to reduced time truncation errors.
But, due to the empirical nature of the control parame-
ters for the TBFN strategy, an optimal parameter
choice is not easy and a normal user would likely tend
to accept a solution at an ’efficient’ time step size as
soon as the solution has converged.

It should be noted that spatial discretization errors
due to mesh effects are not controlled by & (this would
require a fully adaptive solution strategy similar to® and
represents a future challenging problem in unsaturated
flow). Instead, spatial discretization effects are ana-
lyzed by comparing different mesh resolutions when-
ever available and appropriate.

1.8.1 Infiltration in homogeneous
and inhomogeneous soil columns

1.8.1.1 Celia et al.’s problem

Celia et al.* introduced a modified Picard method
for the mixed (y — s -) form of the Richards equation to
study water infiltration in a homogeneous soil column
with the following parameters*': column length of 1 m,
van Genuchten-Mualem parametric model (1-3), (1-4)
inusingn=2,(m=0.5), a =3.351/m, ¢ =0.368, s, =
0.277, and s, = 1.0, isotropic saturated conductivity of
0.922-107" m/s, vanishing compressibility S, ~ 0, zero
air-entry pressure head y, = 0, constant pressure head
y =-0.75 m at the top and vy =-10.0 m at the bottom,
and initial pressure head \uo =-10.0 m. We choose an
initial time step size of Az, = 10> d. The same spatial
discretization characteristics as given in* are applied,
where Az = 0.5 cm (dense grid) and Az = 2.5 cm
(coarse grid). In* dense-grid simulations were per-
formed with a constant time increment of Ar = 60 s,
which means their ’best’ solutions for a simulation
time of 1 day were obtained after 1440 time steps plus
a number of unreported Picard steps.

Figure 1.2 compares the pressure profiles computed
by the PCOSN scheme with Celia et al.’s solution for
the dense grid at a simulation time of 1 day. The agree-
ment is quite perfect if using the standard central
weighting scheme. Clearly, for this problem an
upstream weighting is numerically not required
because the central weighting solutions are non-oscilla-
tory. Nevertheless, if applying upstream weighting a
typical phase lead error appears as seen in Fig. 1.2. It is
important to note that the same curves are generated for



both the first-order accurate FE/BE and the second-
order accurate AB/TR PCOSN schemes. Furthermore,
if relaxing the error bound & to 10° the FE/BE
scheme still gives identical results, but the AB/TR
began to fail in producing nonlinear wiggles.

Pressure [kPa]

o  Celiaetal.

PCOSN (central)

-80 = ——— PCOSN (upstream) —
-100 1 | 1 1 L 4 s $ s
0.0 0.2 0.4 0.6 0.8 1.0
Depth [m]

Figure 1.2 Pressure profiles at # = 1 day for the dense
grid: PCOSN results for central and upstream weightin§
(both FE/BE and AB/TR scheme) with error & = 10
in comparison with Celia et al.’s results**!.

Alternatively, if we use a Newton mixed (y—s)-
form scheme, c¢f. eqn (1-30), where the primary vari-
able is always the pressure head v, with a FE/BE time
marching strategy the same results as outlined in Fig.
1.2 are obtained. However, compared to the PCOSN
variable switching, more than thrice the number of
Newton steps are required for the same error parameter.
Table 1.1 summarizes the solution effort needed for the
different predictor-corrector schemes and error toler-
ances.

Figure 1.3 presents a comparison of the dense and
coarse grid solutions to illustrate spatial discretization
effects. As shown, a significant phase lead and a some-
what smeared pressure profile result. A similar effect is
also obtained if an inappropriate time stepping is
selected as displayed in Fig. 1.4. The TBFN scheme
requires only a small number of Newton steps as sum-
marized in Table 1.2. Solutions were obtained up to
five times faster than the PCOSN and up to eighteen
times faster than the Newton mixed (y — s )-form under
comparable conditions. The price to pay for that is a
remarkable loss of accuracy (Fig. 1.4). It is important
to indicate that this effect is independent of the Newton
convergence limit §. We obtained the same leading
curve behavior if decreasing & (down to 10° ). As
given in Table 1.2 the TBFN scheme takes 18 time
steps for a constraint of Z, = 2. Only when we
increase the number of time steps (e. g., enforce an
unusual constraint of Z . = 11) the accuracy
improves (cf. Fig. 1.4). This clearly indicates that the
error of the TBFN scheme is caused by temporal dis-
cretization, which will be further discussed below.
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0 T T T T T T T T T
-20 =
£ 40 i
=h
o -
2
5 .
s -60
dense grid J
coarse grid
-80
-100 1 1 1 1 L ‘
0.0 0.2 0.4 0.6 0.8 1.0

Depth [m]
Figure 1.3 Pressure profiles at # = 1 day computed by the
PCOSN scheme (central weighting) with error
8 = 10 for the dense and coarse grid.

The time behavior of the residual error |R| L,
plotted in Fig. 1.5 for the TBFN and PCOSN schemes
While the PCOSN terminates with errors in the range
of 10°-5-10"' , the TBFN produces |R|, errors
smaller than 10 with the limit of 5 = 10°* for a
RMS error convergence criterion (1-43). The total
mass balance error TMBE(T =1 d), eqn (1-54), can be
estimated at 0(1073) for the PCOSN and 0(1074) for
the TBFN.

Pressure [kPa]

-60

|l —— PCOSN
—— TBFN (unconstrained)
-80 = - -+ TBEN Epx=1.1
-100 P R B ]
0.0 0.2 0.4 0.6 0.8 1.0

Depth [m]
Figure 1.4 Computed pressure proﬁles at t = 1 day for
the PCOSN scheme (with § = 10~ ) and the TBFN
scheme (using & = 10 ,...,10 ~) at unconstrained
(2,,4x = ©) and constrained (E,,,. = 1.1) time step-
ping; dense grid and central weighting.



Table 1.1 Solution effort needed for the PCOSN variable switching scheme compared to the Newton mixed
(y-s-) form solution (dense grid, simulation time 1 day)

C Actual time Total .

Scheme Type Weighting Error & steps Newt:n Efficiency
steps*)

PCOSN FE/BE central 10 437 443 1.
PCOSN FE/BE upstream 10! 379 386 87
PCOSN FE/BE central 107 283 352 79
PCOSN FE/BE upstream 107 148 151 34
PCOSN AB/TR central 10 436 580 1.31
PCOSN AB/TR upstream 10! 330 355 .80
PCOSN AB/TR central 1073 failed failed -
PCOSN AB/TR upstream 10 failed failed -
mixed FE/BE central 10 1406 1556 3.51
mixed FE/BE upstream 10! 1270 1353 3.05
mixed FE/BE central 107 430 477 1.08
mixed FE/BE upstream 10 388 431 97

*) Including rejected steps
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Table 1.2 Solution effort for the TBFN scheme using fully implicit time stepping and central weighting
(dense grid, simulation time 1 day)

Error § Coilstraint Weighting Actual time Total Ne:vton Efficiency (Tab.

B ax steps steps*) 1.1)
10" 0 central 8 88 0.2
10! 0 upstream 5 63 0.14
107! 2 central 18 85 0.19
10! 2 upstream 18 94 0.21
107! 1.1 central 97 263 0.59
10! 1.1 upstream 97 309 0.70
10 2 central 18 65 0.15
107 2 upstream 18 70 0.16
107 2 central 18 96 0.22
107 2 upstream 18 120 0.27
10° 2 central 18 102 0.23
10°° 2 upstream 18 143 0.32

*) Including rejected steps



— TBFN
—— PCOSN

IRl i

1010 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time ¢ [d]
Figure 1.5 History of residual error ||R||L for the TBFN

and PCOSN schemes with & = 10 " RMS error conver-
gence criterion (1-43) and central welghting.

1.8.1.2 Van Genuchten’s problem

Van Genuchten** describes results for moisture
movement in a layered soil. A soil column with a
length of 170 cm includes 4 layers: clay loam (0-25
cm), loamy sand (25-75 cm), dense material (75-87
cm) and sand (87-170 cm), where the loamy-sand layer
properties change gradually with depth. The initial con-
ditions for the flow are given by \uo =-3.5m. A con-
stant flux is specified at the surface qh -0.25 m/d for
t < 1 day (infiltration) and q = 0.005 m/d for 7> 1 day
(evaporation). At the bottom, a drainage gradient-type
boundary condition of qhg'ad = K|, prom = 4 m/d is
imposed®. Accordingly, the bottom boundary can freely
drain®. The parameters of the constitutive relations
(van Genuchten-Mualem model) are fully listed in*!.

The column is discretized in 170 elements, i.e., Az = 1
cm. The initial time step is Az, = 107 d.

This problem is not particularly difficult to solve,
since the initial conditions are not very dry. All formu-
lations and schemes were successful. Their results are
in good agreement with van Genuchten’s solutions as
shown in Fig. 1.6 for the infiltration period. Differ-
ences between central and upstream weighting are also
exhibited in Fig. 1.6. To study the merits and solution
efforts of the different numerical schemes for this het-
erogeneous system, let us focus on the saturation pro-
file computed at the end of the infiltration period (¢ = 1
d) under low and extremely high initial suction condi-
tions \VO .

Using the PCOSN scheme with FE/BE and central
weighting the computed saturation profiles at # =1 d is
shown in Fig. 1.7 for different \VO . As expected, at very
dry initial conditions the saturation profile remains
unchanged, proving thus the good conservative proper-
ties of the variable switching technique. Practically any
arbitrary large value of initial suction can be enforced.
In contrast to this, standard formulations using the
pressure head y as primary variable can run into diffi-
culties or completely fail. Especially for very dry con-
ditions there is practically no way to find reasonable
convergent solutions in acceptable times. Figure 1.8
shows the results for both the mixed (y — s )-form with
Newton iteration (comparable to eqn (1-30)) and the
standard  -form with Picard iteration and chord slope
approximation. As seen at low suction (wo =-3.5m)
the schemes yield the same results. However, already
for Wo = -10 m the standard v -form reveals mass-con-
servative problems (phase lag). The phase lag error
dramatically grows at higher initial suctions as evi-
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results (Fig. 1.7). We were not able to find convergent
solutions for both the mixed (y —s)-form and the stan-
dard y -form at higher suction values (\VO <-10° m).

denced in Fig. 1.8 for \VO =-10° m. On the other hand,
the conservative mixed (w-s)-form provides better
results, though not without a phase lag error at \VO
=-10° m (Fig. 1.8) in comparison to the good PCOSN
I 0

0.00 —— - : ] ]
025 F o ] 25 - o -

i ] - .

0.50 , 50 [~ ]

— I 18 [ : 4
£ 075 F - & B : ]
e i 1€ [ .
gt 18 i i ]
1.00 -4 = 100 - : ]

- - Q — . ] —

r 1% E .

125 - 4 15 : -
1.50 - central weighting | 150 — 3 E ]

L - = = - upstream weighting - — : E -

T | | e H I .

Jo0 20 30 40 50 .60
Moisture Content, (cm3/cm3)
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00 01 02 03 04 05 06
Moisture content 6 [1]

Figure 1.6 Simulated moisture-content profiles (6 = s - € ) during infiltration: present solutions (left) and van Genu-

chten’s results (right), time in days.
A comparison of the PCOSN and the TBFN vari- lead effects in the saturation profile. This is caused by

able switching schemes is given in Fig. 1.9. At low suc- the poorer temporal accuracy of the TBFN scheme
tion values the differences can be seen in the typical which takes a much smaller number of time steps than
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the error-controlled PCOSN scheme. However, under
very dry conditions the differences disappear. For ini-
tial pressure heads smaller than -10* m the computed
saturation profiles become identical.

Table 1.3 summarizes the solution effort in terms of
time steps and number of iterations for different
schemes depending on the initial suction Wo . The vari-
able switching techniques (PCOSN and TBFN, col-
umns 2-5 of Table 1.3) were successful for all \VO
considered, while the schemes using the pressure head
y as primary variable (mixed Newton (y -s)-form
with both PCOSN and TBFN, and standard Picard -
form, columns 6-11 of Table 1.3) have shown unsuit-
able for very dry conditions \4/0<—103 m. The most
interesting outcomes of these comparisons are the fol-
lowing:

10 mr—— 71— ——
0.8 — —
.5 | /'3.5 i
E 06 =
2 L |
4 [ ) ]
L -103 -10 i
-104 ¢

04 - 105 .
I -10° .
02 I T T R

0.0 0.5 1.0 1.5

Depth [m]

Figure 1.7 Saturation distribution at = 1 day computed by

the PCOSN scheme (FE/BE, central Weightin%) with error
—4 Lo .

6 = 10 ° for various initial pressure heads v~ in [m].

— mixed y-s-form
standard y-form _|

0.8

Saturation [1]
(=)
(=)}

0.4

0.0 0.5 1.0 1.5
Depth [m]
Figure 1.8 Saturation distribution at # = 1 day computed by
the Newton mixed (y —s)-form and the standard Picard
iteration y -form (FE/BE, central Weightingg with error
8 = 10 ~ for various initial pressure heads y~ in [m].
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Figure 1.9 Comparison of the PCOSN and the TBFN sat-
uration distributions simulated at ¢ = 1 day (FE/BE, cen-
tral weighting) with error & = 10 for various initial
pressure heads ¢~ in [m].

For variable switching the TBFN scheme is about
three to five times faster than the PCOSN scheme.
Under very dry conditions the TBFN is definitely supe-
rior to PCOSN since the results are virtually equivalent
(cf. Fig. 1.9). It should be recalled that the PCOSN
scheme is driven by controlling the temporal discreti-
zation error while the TBFN scheme is not. The
required number of time steps increases naturally with
decreasing \VO. At the same time, the number of
rejected steps increases so that the overall effort grows
with decreasing \uo .

The power of the variable switching technique
becomes obvious if comparing it with the v primary
variable solution under the same time stepping strategy.

We additionally applied the TBFN technique to the v
primary variable form, omitting the variable switching.
The computational effort dramatically increases by
orders of magnitude (3 to 168 times slower than the
TBFN with variable switching as indicated by columns
9 vs. 5 of Table 1.3). Similar observations were made
by Forsyth et al.!3. It is interesting to note that the
advantage of the TBFN scheme with respect to the
computational effort vanishes for the y primary vari-
able form (with the targets (1-59)). Here, the PCOSN
scheme is comparable or even faster (cf. columns 7 vs.
9 in Table 1.3). However, the TBFN scheme was able
to find convergent solutions for all \VO , but the required
number of Newton steps became extremely large for
very dry conditions, unacceptable for practical model-
ing.

For the variable switching technique we found the
following estimates of the total mass balance error
TMBE(T =1 d). At lower suction heads \uo, see Tab.
1.3, TMBE(T = 1 d) is of O(10 ") for the PCOSN and
0(1075) for the TBFN. At higher suction heads wo we
found TMBE(T =1 d) of 0(1073) for the PCOSN and
0(10™*) for the TBFN.



Table 1.3 Solution effort for different schemes (simulation time 1 day, FE/BE, central weighting, error
s5=10" , time constraint =, = 2)

Variable switching

Primary variable y

. I;IIIXG? (y-s )—1f0§)n ’ Standard v -form,
Initial PCOSN TBFN) ewton, eqn (1-30) Picard,
pressuroe PCOSN TBFNI) eqn (1-32)
head vy
[m] . Total . Total . Total . Total . Total
Time Time Time Time Time .
steps Newton stens Newton steps Newton stens Newton steps Picard
P steps 2 p steps 2 P steps p steps 2 P steps 2
1 2 3 4 5 6 7 8 9 10 11
-3.5 358 360 32 109 634 638 43 292 643 648
-10 676 684 34 171 1824 2112 154 1535 1760 2021
—103 1510 2187 66 580 4202 4792 929 9186 1128 1472
—104 1990 3254 76 673 failed 1247 11535 failed
—105 2180 3858 97 831 failed 1539 14138 failed
—106 2696 4988 115 952 failed 155025 159641 failed

1) Additional time constraint Aty = 0.05d

2) Including rejected steps

1.8.2 Drainage of a very coarse mate-

rial

The drainage of a very coarse material represents an
interesting and challenging test case. By using a w(s) -
curve with no (or negligible) capillarity (very large o

in eqn (1-3) or eqn (1-5)) the medium is at the residual
saturation s, very rapidly and the mass balance can be
checked without computing the remaining water in the
drained area. The problem is described in Fig. 1.10.
Due to the large o -parameters the numerical simula-
tion becomes difficult for an unsaturated-saturated
modeling approach (in contrast to a much easier free-
surface modeling approach as discussed in®). The prob-
lem is solved by using both the van Genuchten-
Mualem (1-3) and the Brooks-Corey (1-5) constitutive
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relationships. The latter offers the advantage to choose
the K (s) relationship (1-6) independently of the y(s) -
curve (1-5).

In this context an analytical expression for the water
table descent can be easily derived as

dh K h(?)
L L S L 1-60
dt s(ssfsr)[h(t)-*-L} ( )
where h(¢) is the water table elevation.
z K=10" m/s
A _10_ =
L h=r=6m &=033333
A D2
J}ats: S, =10 7 1/m
— sy =1
b= s, = 0.1
© atsg
ol | o n=2
a = 10* I/m
Y _
- X
¢A= I~y

|- L=7m o)

Figure 1.10 Sketch of the drainage problem.

Integrating this equation yields

t:

S(S‘s];Sr)[ho(lf(P)lenkp'] ¢ = }L(l;) (1-613)
h

and
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o) = KA(J"—O) (1-61b)

o+L/h
Table 1.4 lists the analytical results at given relative
drawdown ¢ . The domain is discretized in 200 quadri-
lateral finite elements (Az = 6.5 cm), where the origi-
nal problem (Fig. 1.10) can be modelled by a straight
13-m-long strip. The initial time step is Af, = 10'® d.
For this example the PCOSN scheme with FE/BE
using &, . = 2 is selected.

Initially, the domain is fully saturated at 7’ =6m
and compressibility S initiates the drainage process.
Using the strong van Genuchten parameters as stated in
Fig. 1.10 only the variable switching technique was
successful while the mixed (y —s)-form ran into sig-
nificant convergence difficulties and the standard w -
form even completely failed. The computational results
for the PCOSN scheme are listed in Table 1.5. The
agreement with the analytical results (Table 1.4) is
quite good. The solution needs a rather large number of
Newton steps (6063 for a simulation time of 1 day with
central weighting). However, one can relax (smooth)
the problem when setting the parameters equivalent to
a free-surface approach®. In this case we prefer the
Brooks-Corey parametric model (1-5) and (1-6) with
the following ’simplified’ data: a=1/(Az/2) = 31
I/m, n =1, and k¥ = 1. The central weighting solution
with these Brooks-Corey parameters requires 2544
Newton steps for a 1-day simulation. Note that the
reduction of the exponent x to unity is somewhat arti-
ficial. However, it is acceptable for this water table
problem (see the results presented in Table 1.5 in com-
parison to the analytical results of Table 1.4).



Table 1.5 Numerical results computed by the PCOSN variable switching technique (5 = 5- 10° , central

Table 1.4 Analytical results

t
0 t1d] 0 [m¥/d] [owa
0
1. 0 3.987692 0
75 122006 3.380870 45
.50 272640 2.592000 9
25 493197 1.524706 1.35
.0372872 1. 267586 1.789
0 0 0 1.8

and upstream weighting, FE/BE, =, = 2)

van Genuchten model:
o = 10° I/m,n=2

Brooks-Corey model:

a=311/mn=1,k =1

central weighting

central weighting

upstream weighting

t[d]
t t t
0 [m3/d] [owar oIm¥d] | [owdr | Q[md] [owar
0 0 0
-8 -8 -8 -8
10 3.9876 3.5-10 3.9618 52-10 3.9603 4.0-10
122006 3.3669 4454 3.2917 4407 3.2715 4394
272640 2.6185 8884 2.5026 8783 24722 8722
493197 15803 1328 1.4703 1313 1.4434 1300
L. 3285 1727 2742 1.686 2679 1.665
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The upstream weighting was not successful for the
van Genuchten model. Applying the Brooks-Corey
model with central and upstream weighting gave com-
parable results as listed in Table 1.5. The number of
Newton steps slightly increased to 2818 for a 1-day
simulation if upstream weighting was applied.

In estimating the TMBE(T =1 d) error (1-54) we
found 0(1072) for both the van Genuchten model and
the Brooks-Corey model. This estimate is conform to
the mass defects which are detected in the comparisons
of the numerical results of Table 1.5 to the analytical
results of Table 1.4.

1.8.3 Perched water table problem

Kirkland et al.?® presented a two-dimensional prob-
lem of a developing perched water table surrounded by
very dry unsaturated conditions. It is a good test prob-
lem to show the variable switching ability in both
unsaturated and saturated zones. The problem is
described in Fig. 1.11. Water infiltrates with a very
large rate into a dry soil at \uo = -500 m and encounters
a clay barrier which allows for the formation of a
perched water table. All boundaries are no flow except
where the infiltration is imposed. The material proper-
ties of the problem are summarized in Table 1.6 for the

van Genuchten-Mualem parametric model. Both the
PCOSN and the TBFN scheme are used with & = 10*
and Az, = 107 d. Additionally, TBFN is constrained
by Z,,. = 2. The symmetric half of the domain is dis-
cretized in a 50x60 quadrilateral mesh (3111 nodes)
according to the spatial discretization used by Kirkland
et al.?® and Forsyth et al.3.

q,=0.5m/d

LAALAARALAALLL)

g Sand
g —
(o]
g
1
« Yy’ =-500 m Clay
Sand
- I m
-
- 4m - |
- Sm ‘|

Figure 1.11 Perched water table problem (modified
from?9).

Table 1.6 Material properties for the perched water table problem

Material K [m/s] e [1] s, [1] o [1/m] n [1]
Sand 6.262 - 1075 .3658 .07818 2.80 2.2390
Clay 1.516 - 1076 4686 2262 1.04 1.3954




A comparison of the pressure contours at 1 day with
Kirkland et al.’s results reveals an acceptable agree-
ment as displayed in Fig. 1.12. The zero pressure con-
tours agree quite well while the -4000 kPa isobar
equivalent of Kirkland ef al.’s results is slightly ahead,
forming a more diffusive vertical pressure front com-
pared to the present solution. The higher sharpness of
the present profile is also identified in comparison to
Forsyth ef al.’s saturation contours (Fig. 1.13). Forsyth
et al.’ used an aggressive target-based time marching
scheme similar to the present TBFN method and got
the solution after 120 Newton steps. The present
PCOSN and TBFN schemes needed many more steps
with the given control parameters. This is probably due
to a lack of smoothness in the parametric curves near
full saturation. The variable switching technique for the
PCOSN (FE/BE) technique at central weighting
required 1211 time steps and 1556 Newton steps,
meaning that about 30% of the steps had to be rejected
and repeated. In contrast, the TBFN scheme became
less efficient. Only 582 time steps were needed but the
total number of Newton iterations increased to 3381
steps. Similar results were found for upstream weight-
ing. Pressure and saturation profiles are given in Figs.
1.12 and 1.13, respectively.

As displayed in the time step histories for both
schemes in Fig. 1.14 the TBFN scheme progresses
faster at the beginning, while the PCOSN scheme takes
smaller step sizes due to the temporal discretization
accuracy requirements. As soon as the perched water
table is formed (nodes become saturated) the conver-
gence criterion of the TBFN scheme forces smaller
steps. The aggressive selection strategy leads to a rapid
growth of the provisional time step size. However, the
latter is invariably too large for the convergence of

Newton iterations and the larger step sizes have to be
discarded. Oscillations in the step size result in the poor
performance of the TBFN scheme for the present prob-
lem, whereas the PCOSN solution strategy is not
affected by such oscillations. Apparently, the TBFN
strategy can be improved by refining the time stepping
control (e.g., introducing a multiple set of decision
parameters). To this end, Forsyth and Simpson!? pro-
posed a manual monitoring via a file-based checking
procedure.
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Figure 1.12 Simulated pressure contours at # = 1 d: a) present results, PCOSN and TBFN, FE/BE, central and upstream
weighting, pressure contours in [kPa], lengths in [m]; b) Kirkland ez al.’s results?®, pressure head contours in [cm], lengths
n [cm].
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Figure 1.13 Simulated saturation contours at # = 1 d: a) present results, PCOSN and TBFN, FE/BE, central and upstream
weighting, lengths in [m]; b) Forsyth et al.’s results'?; - - - one phase, upstream weighting; . . . one phase, central weight-
ing; two phases, upstream weighting, lengths in [cm].
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Figure 1.14 Time step histories of the perched water
table problem for the TBFN and PCOSN schemes (FE/
BE, central weighting) using 0§ = 10" and
Aty = 10°4d (B,ax = 2 for TBFN); required time
steps: 582 (Newton 3381) for TBFN and 1211 (Newton
1556) for PCOSN.

The simulations with the PCOSN and TBFN
schemes give identical results (Figs. 1.12 and 1.13)
because the required step number is sufficiently high
and meets the accuracy requirements. Considering the
results found in the above sections, the differences
between the present and Kirkland ez al.’s as well as
Forsyth et al.’s results can mainly be attributed to tem-
poral discretization effects. Typically, a smaller step
number generates a phase lead and a smoother front.
This will be also confirmed in the following examples.

The TMBE(T = 1 d) balance error (1-54) was found
to be of O( 10_4) for the PCOSN and of 0(10_5) for the
TBFN scheme.

1.8.4 Infiltration in a large caisson

1.8.4.1 Forsyth et al.’s problem

The infiltration process in a large caisson consisting
of heterogeneous materials at dry initial conditions has
been thoroughly studied by Forsyth ez al.'3. We choose
this problem to show the power of the variable switch-
ing technique and to identify solution differences
caused by the time stepping and iteration control alter-
natives. Figure 1.15 presents a schematic view of the
2D cross-sectional problem. All boundaries are imper-
vious except the infiltration boundary section on top.
Two initial pressure head conditions of \VO: -7.34 m
and \yo =-100 m are simulated. Table lists the material
properties used for the different zones of the domain.
Both the PCOSN and the TBFN schemes are applied
with & = 10°* , Aty = 10° d (TBFN is again con-
strained by Z, = 2) with central and upstream
weighting. Fully implicit FE/BE strategies are selected.
The spatial discretization is 90x21 quadrilateral ele-
ments (1890 nodes) as in Forsyth et al.3.

Based on the given control parameters the TBFN
scheme was about four times faster than the PCOSN
scheme as indicated in Table 1.8. On the average 3 to 4
Newton steps were required for the TBFN strategy at
each time step. The PCOSN scheme provided a quite
perfect time stepping control without repeated time
steps. The extra costs for the PCOSN scheme are
reflected by an increased temporal accuracy, as
required by the error control. The results at 30 days can
be seen in Figs. 1.16 and 1.17 for w0= -7.34 m and
\yo = -100 m, respectively, in comparison to Forsyth et
al.’s findings'3.
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Table 1.7 Material properties for Forsyth et al.’s problem (van Genuchten-Mualem parametric model)

Zone K [m/s] g [1] s, [1] o [1/m] n [1]
1 9.153-10° .3680 2771 3.34 1.982
2 5.445.107 3510 .2806 3.63 1.632
3 4.805-107° 3250 2643 3.45 1.573
4 4.805-10°" 3250 2643 3.45 1.573
Surprisingly, the PCOSN results are rather depart |<ﬂ,|

from the TBFN results, especially for th ~0.02m

y = -7.34 m. The saturation front is significantly dif- n o

fused by the ’low-cost’” TBFN simulation using the Zone 2

’aggressive’ control parameters (1-59) while the

PCOSN provides a much steeper saturation profile. —

Expectedly, Forsyth et al.’s results'® agree quite well Zone 4 E# Zone 3

with the poorer TBFN solutions since they performed 'm . —

an even smaller number of Newton steps (29 steps at | |

\y0= -7.34 m and 48 steps at \y0= -100 m, for central E

weighting). This example clearly illustrates how far a (1) y'=-734m

seemingly accurate, convergent and efficient solution 8 @ y0=-100 m

can be from a more accurate prediction independent of
the use of central and upstream weighting. Control
parameters smaller than (1-59) have to be chosen for
the TBFN to enforce smaller time step sizes and to find
results comparable to the PCOSN.

Y

8 m

-
-

-
-

04 m

||

0.5m

Figure 1.15 Forsyth et al.’s infiltration problem (modified

from!3).



Table 1.8 Solution effort for Forsyth et al.’s problem (FE/BE)

v'=-734m v'=-100m
PCOSN TBFN PCOSN TBFN
up- up- up- up-
central P central p central p central P
stream stream stream stream
Time steps 199 174 15 15 279 251 16 15
Total Newton steps 200 174 51 67 279 251 69 69
a)
0 2 4 6 800 800
T T T ‘ T T T T T T T T T
~600
4
\ ~
\
Y A
\ 41400
I
I 4
[
n .
1 -
/ -200
—— PCOSN, central 1
—— PCOSN, upstream
- = = - TBFN, central 1
- — - TBEFN, upstream y 7
L | |'Qb | /I | I | | | | | | | | 0? IS B ! {1 S IS L e L L i [
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Figure 1.16 Computed saturation contours at ¢ = 30 d, initial pressure head \vo = -7.34 m: a) present solutions by PCOSN
and TBFN, central and upstream weighting, lengths in [m]; b) Forsyth et al.’s results'3; - - - one phase, upstream weighting;

... one phase, central weighting; two phases, upstream weighting, lengths in [cm].
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It is apparent that the present problem is sensitive to
discretization errors. The influence of the spatial dis-
cretization 1is illustrated in Fig. 1.18 for the case
\uoz -100 m. The results of structured coarse meshes
(90x21 and 21x90 nodes) are compared to a dense
unstructured mesh consisting of 56,960 triangular ele-
ments (28,917 nodes). This dense mesh is generated by

splitting each quadrilateral into two triangles followed
by a double total refinement into four triangles
(20x89x2x4x4). It shows how a coarse meshing in one
direction can lead to phase lag errors and smearing of
the saturation profiles.

a)
0 2 4 6 600 800
T T T | T T T T 1 T T T T T T
6 -600
4 400
2 -200
—— PCOSN, central
—— PCOSN, upstream ]
- ==~ TBFN, central b
F - — - TBFN, upstream 1 r E
0 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 0 L 1l i b I H I i 1 L Il J S} 1 1 0
0 2 4 6 8 0 200 400 600 800

Figure 1.17 Computed saturation contours at # = 30 d, initial pressure head \uo =-100 m: a) present solutions by PCOSN
and TBFN, central and upstream weighting, lengths in [m]; b) Forsyth et al.’s results'3; - - - one phase, upstream weight-

ing; . . . one phase, central weighting;

two phases, upstream weighting, lengths in [cm].
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_____ 21x90 nodal meshing

Figure 1.18 Influence of spatial discretization, computed
saturation contours at ¢ = 30 d, initial pressure head vy~ =-
100 m: dense mesh consists of 56,960 triangles and 28,917
nodes, central weighting, PCOSN (FE/BE) scheme with
2507 implicit time steps and 3596 Newton steps, lengths in
[m].

The history of the residual error |R| L depending on
the selected time stepping schemes and the initial pres-
sure head \VO is plotted in Fig. 1.28. The one-step New-
ton scheme (PCOSN) terminates with errors of
0(1075) while the TBFN is, at least, one order better.
This naturally results from the full Newton technique
incorporated in the TBFN, where, at least, two iteration
steps are performed and convergence in the residuals
IRl L is quadratic. Accordingly, we estimate a
TMBE(T =30 d) of O(10"°) for the PCOSN and of
0(10"%) for the TBFN.

102 T T T T T

) — TBEN, \uz 734m
107 ¢ - ==~TBFN, V :-100m 3

IR, tmrd]

10710 1 I I 1 1
0 5 10 15 20 25 30

time ¢ [d]

Figure 1.19 History of residual error |R| L, for the TBFN
and PCOSN schemes with 8 = 10, RMS error conver-
gence criterion (1-43), central weighting and 90x21 mesh.

1.8.4.2 Forsyth and Kropinski’s problem

Forsyth and Kropinski'* modified the above infiltra-
tion problem of Fig. 1.15 by increasing the pore size
distribution index n to 5 for the zones 3 and 4. The
other parameters remain unchanged and correspond to
Table . This increase of n makes the capillary pressure
curve very flat at intermediate saturation values and
spurious local maxima and minima can result for
coarse meshes. This is shown in Fig. 1.20 for a struc-
tured 90x21 nodal meshing and a central weighting.
The comparison with Forsyth and Kropinski'4 indicates
mesh effects. Although using the same mesh, differ-
ences at material interfaces and at the bottom of the
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caisson are detected. These may result from different
nodal spacing at these locations. The PCOSN required
1202 time steps with 2015 Newton steps, whereas the
TBFN only took 146 time steps and 809 Newton itera-
tions. As shown in Fig. 1.20 the reduced stepping by
TBFN leads to smearing and phase lead errors, how-
ever, only for the advanced saturation contours while
the remaining part is close to the PCOSN results.

Upstream weighting can be used to damp out the
spurious oscillations in the saturation distributions.
Figure 1.21 compares the present upstream solution
with Forsyth and Kropinski’s result. The agreement is
quite good. Both upstream techniques damp out the
wiggles appearing in the central weighting solutions
(Fig. 1.20). Differences in the lag of the saturation pro-

a)

file are probably due to the different nodal spacing used
in the present and Forsyth and Kropinski’s'* solutions.

A more appropriate meshing of the problem (i.e.,
21x90 instead of 90x21) can considerably improve the
results (Figs. 1.22(a) and 1.22(b)). The solution can be
compared to the results obtained with the dense mesh
(28.917 nodes) shown in Fig. 1.23. Sharper saturation
contours occur at the material interfaces. The medium
becomes fully saturated at the bottom of the caisson
forming a typical saturation ’tongue’. Its size is quite
sensitive to spatial and temporal discretizations as
revealed by the comparison to Fig. 1.22. In contrast,
Forsyth and Kropinski'* predict a lead in the saturation
pattern (Fig. 1.22(b)).

6 AT
5 r —— PCOSN Central 80x21
L - — - TBFN
L
N < >
L <
s -va) % 5 5
P _:a.m:
5 6 7

Figure 1.20 Saturation contours at ¢ = 30 d, initial pressure head \uo = -100 m, and central weighting: a) present solutions
by PCOSN and TBFN, 90x21 nodal meshing; b) Forsyth and Kropinski’s results'#; lengths in [m].



a) b)
£ 550,240, N,

—0.60 -

Upstream 90x21

0. 40

0p*0,
se°0.
[

LA L L L B

5 6 7 a

Figure 1.21 Saturation contours at ¢ = 30 d, initial pressure head \uo = -100 m, and upstream weighting: a) present solu-
tions by PCOSN and TBFN, 90x21 nodal meshing; b) Forsyth and Kropinski’s results'4; lengths in [m].
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Figure 1.22 Saturation contours for refined meshes at # = 30 d, initial pressure head WO =-100 m, and central weighting: a)
present solutions by PCOSN, 21x90 nodal meshing; b) Forsyth and Kropinski’s results'#; lengths in [m].

In checking the mass balance errors TMBE(7), eqn
(1-54), we estimate the same order as indicated in the
aboveg)roblem of section 1.8.4.1: TMBE(T 30d) of
0(10 ) for the PCOSN and of O(10 ) for the TBFN.
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Figure 1.23 Present saturation contours for the dense mesh
(28,917 nodes) at ¢ = 30 d, initial pressure head \uo =-100 m,
central weighting, lengths in [m].

1.8.5 Capillary barrier modeling

In unsaturated flow conditions a capillary barrier
often appears at the contact of a layer of fine soil over-
lying a layer of coarse soil***. If the layer interface is
tilted, moisture infiltrating in the fine layer will be
diverted and flow down the contact. In practical appli-
cations, a capillary barrier can be built by placing a fine
layer (e.g., fine sand) over an inclined coarse layer
(e.g., gravel). To simulate capillary barriers numerical
schemes have to tackle large parameter contrasts,
highly exaggerated and distorted geometries as well as
very dry initial conditions. Focusing on steady-state

solutions, which are of the most practical interest here,
and assuming that there is no bifurcation in the devel-
opment of the capillary diversion, the TBFN scheme
seems be the most effective solution technique for this
class of problems.

1.8.5.1 Webb's problem

Oldenburg and Pruess®* presented a first numerical
study of a 2D tilted capillary barrier. To find reasonable
results they introduced an upstream weighting method.
However, both from the qualitative and quantitative
point of view their results became generally poor and
no agreement with analytical results** could be
achieved. More recently, Webb* could improve the
steady-state results by using an upstream weighting
technique agreeing well with Ross’ analytical
prediction*’. We use Webb’s capillary barrier problem*
to study the capability of the variable switching tech-
nique for both central and upstream weighting.

Webb’s capillary barrier consists of a two (fine over
coarse) layer configuration with a total thickness of 1
m. The fine and coarse layers are both 0.5 m thick, and
the dip of the layers is 5% (2.86°). The parameters of
the two layers are summarized in Table 1.9. The infil-
tration rate at the surface of the domain is 0.0048 m/d.
The left boundary is impervious and the right and bot-
tom boundaries allow for drainage. This can be done in
several ways. We attempted different alternatives: con-
strained point sinks, gradient-type boundary conditions
and potential-type boundary conditions. In consider-
ation of the extreme parameter situation of the fine and
coarse layers (cf. Table 1.9) we found a better conver-
gence behavior for a potential-type boundary condi-

FEFLOW | 49



50 | White Papers - Vol. |

tions, where the hydraulic head % is imposed. Since the
o -parameter of the coarse layer is very large the influ-
ence of the location of the water table (the yw = 0 con-
dition) cannot be significant. It is thus sufficient to set
the water table at the right lower corner of the domain
(at z = 0) and prescribe a # = 0 Dirichlet boundary
condition along the bottom and the right boundaries. In
accordance with these boundary conditions a corre-
sponding hydrostatic initial condition is assumed, i.c., a
vertical linear distribution of 4° in the range from O to -
6 m. This results in averaged initial saturations " of
0.394872 for the fine layer and 0.02864 for the coarse
layer which is very close to the residual saturations s,
(cf- Table 1.9). The model domain is appropriately dis-
cretized in quadrilateral elements as displayed in Fig.
1.24. At the layer contact the element thickness is
0.005 m, and gradually increases with the distance
from the interface. The implicit time stepping (FE/BE)
was used with Az, = 107 d.

Surprisingly, the TBFN scheme ran into significant
convergence difficulties. The reason is that a fully satu-
rated zone is quickly formed in the upper layer along
the material interface. Such a situation is similar to the
perched water problem previously studied in section
1.8.3 where the PCOSN scheme became superior to the
TBFN. For the present problem successful solutions
were obtained by PCOSN running over a time period
of 100 days. At this time, the flow budget has reached
equilibrium and the capillary diversion effect has set-
tled down. Due to the sharp parameter contrasts we
select for this task the maximum error norm (1-44)
instead of the integral RMS norm (1-43). Here, an error
tolerance of & = 10 turned out to be sufficient.

Table 1.9 Material properties for Webb’s capillary barrier problem (van Genuchten-Mualem parametric

model)
Parameter Upper layer (fine) Lower layer

(coarse)

e [1] 0.39 0.42

K [mis] 2.1-107" o1
s, [1] 0.394872 0.028571

s [1] 1.

n [1] 5.74 219

o [1/m] 39 490,




'

100 m |
- >
|‘ |

Figure 1.24 Model domain and mesh (1472 quadrilater-
als with 1551 nodes) for Webb’s capillary barrier
problem*® (exaggeration 10 : 1).

Figure 1.25 exhibits the computed saturation distri-
bution at 100 days. It reveals how the saturated zone
has built up along the contact zone in the fine layer
while the saturation in the coarse layer remains only
slightly above the residual saturation. From such a sat-
uration pattern the capillary diversion cannot be identi-
fied. However, the integration of the velocity field in
form of streamlines clearly illustrates the capillary
diversion effects, as shown in Fig. 1.25. The diversion
is maintained up to a certain distance, the diversion
length, past which an amount of water equal to the
infiltration rate enters the coarse layer.

A comparison of the above results with Ross’ ana-
lytical formula*® and the numerical results obtained by
Webb* can be expressed as a function of the leakage/
infiltration ratio. The theoretical value of the diversion
length determined from Ross’ formula is 32.6 m for the
present parameters (note, Webb* computed 33.2 m).
As evidenced in Fig. 1.26 there is a good qualitative

and quantitative agreement between the analytical and
the numerical results. Note here that Webb’s solution is
based on an upstream weighting scheme. The present
method was able to find solutions for both central and
upstream weighting. As seen in Fig. 1.26 the differ-
ences between upstream and central weighting are rela-
tively small. Upstream weighting damps the slight
oscillations of the downstream velocity field. The
breakthrough point is not significantly affected.

It should be mentioned that the specific advantages
of the variable switching technique disappear in the
present capillary barrier problem. Since the initial pres-
sures remain moderate and since conservation proper-
ties do not play a role for computing a steady-state
solution, the classic v -based form becomes an effec-
tive alternative. We confirmed the above solutions for
the y -model (1-32), using the predictor-corrector time
stepping scheme for both FE/BE and AB/TR, and with-
out the Newton method.
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Figure 1.25 Computed saturation and streamline patterns for Webb’s capillary
barrier*® (exaggeration 10 : 1).
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Figure 1.26 Leakage/infiltration ratio in the coarse layer
for both central and upstream weighting compared to
Ross’ analytical formula*® and Webb’s numerical
results*®,

1.8.5.2 Forsyth and Kropinski’s problem

A different capillary barrier problem has been
recently considered by Forsyth and Kropinski'4. The
problem is described in Fig. 1.27. The material proper-
ties and the initial pressure conditions for the different
layers are given in Table . As indicated the initial con-
ditions are very dry. The infiltration rate at the surface
of the cross-sectional domain is 15 cm/yr. The mesh is
shown in Fig. 1.27. It consists of 5002 quadrilateral lin-
ear elements with 5146 nodes. As seen, the element
size is highly variable in the vertical direction. At the
sand-gravel interface the elements have a thickness as

small as 0.002 m. The left and right vertical boundaries
are considered impervious. To model free drainage at
the bottom of the domain the gradient-type boundary

condition ¢"¢"*¢ = K|y iiom= 023985 m/d applies
there.
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Figure 1.27 Capillary barrier model domain (modified from'#) and mesh (5002 isoparametric bilinear elements with
5146 nodes).

Table 1.10 Material properties and initial pressure for Forsyth and Kropinski’s capillary barrier problem
(van Genuchten-Mualem parametric model)

Zone K [m/s] e [1] s, [1] a [1/m] n [1] v" [kPa]
Loam 1.668 - 10> 452 0752 43 1.246 ~10°
Sand 6.573-10° 345 046 6.34 1.53 ~10°
Gravel | 3.502-10°° 419 074 469, 2.57 30
Crushed tuff | 2.776-10°° 345 032 1.43 1.506 —6-10"

We used both the PCOSN and the TBEN scheme required an unacceptable number of time steps. On the
with & = 10 , Aty = 107 d and Enax = 5-Duetothe other hand, the TBFN scheme, not constrained by tem-
extremely dry initial conditions the PCOSN scheme poral discretization error bounds, provided solutions



with a much smaller number of time steps (and Newton
steps).

We ran the problem for a simulation time of 30
years with the TBFN and applying both the L, (1-43)
and L (1-44) error norms for terminating the Newton
iteration. The evolution of the residual error ||R| L for
both norms is depicted in Fig. 1.28. It reveals that the
L, criterion produces residuals in the range 107 to
107 [m3/d]. For this case the integral total mass bal-
ance error is TMBE(7 = 30 yr) ~ 1.2- 10 %, which can-
not be tolerated. The results for the L criterion is
better by about one order (c¢f. Fig. 1.28) and gives
TMBE(T = 30 yr)~4.7- 10 ° . Accordingly, only the
results obtained under the L criterion will be dis-
cussed.

100 T T T T T

——— RMS norm
Maximum norm

IRl

I 1 L 1
10 15 20 25 30

time ¢ [yr]

Figure 1.28 History of residual error ||R| L for the RMS

L, and maximum L convergence criteria with
—4 >

5 = 10 ° and central weighting.

The 30-year simulation under the L convergence

criterion took about 5000 time steps (with about 10*
total Newton steps) for both the upstream and the cen-
tral weighting. We found the solutions in form of satu-
ration and streamline patterns as displayed in Figs.
1.29(a), 1.29(a) and 1.31.

Forsyth and Kropinski'* used both central and
upstream weighting at two grid resolutions (52x46 and
103x92). They predict that the capillary barrier fails
with a diversion length of about 10 m characterized by
a saturation distribution as exemplified in Fig. 1.29(b)
for upstream weighting and Fig. 1.29(b) for central
weighting with the 52x46 grid.

The present simulations confirm Forsyth and
Kropinski’s results'*. The computed saturation distri-
butions are displayed for three specific contour levels
in Fig. 1.29(a) for the upstream weighting and in Fig.
1.29(a) for the central weighting. Some details are
depart from Forsyth and Kropinski’s simulations. It can
be assumed that most of them is caused by different
boundary conditions. Forsyth and Kropinski imposed a
seepage point on the right-hand side boundary and han-
dled the bottom of the tuff layer as a no-flow boundary,
however, at a far vertical position. In the present model,
such a seepage point is not imposed and the bottom of
the tuff is fully handled as a free-drain boundary at the
actual position as shown in Fig. 1.27. For the central
weighting (Fig. 1.29(a)) we note a jagged saturation
profile which disappears for upstream weighting (Fig.
1.29(a)). A small strip of lower saturation can be seen
along the gravel-tuff interface in both the upstream and
the central solutions. Forsyth and Kropinski found it
only in their central weighting solution (Fig. 1.29(b)).
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Figure 1.29 Simulated saturation patterns at ¢ = 30 yr: a) present solution by TBFN and upstream weighting, b) upstream
weighting solution obtained by Forsyth and Kropinski'*.
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Figure 1.30 Simulated saturation patterns at # = 30 yr: a) present solution by TBFN and central weighting, b) central
weighting solution obtained by Forsyth and Kropinski'*.
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The streamline patterns in Fig. 1.31 illustrate the
effect of the capillary barrier at the sand-gravel mate-
rial interface. Only slight differences exist between
upstream and central weighting. The streamlines reveal
that the diversion length is obviously somewhat larger
than 10 m. Actually, the velocity distribution along the
bottom of the tuff layer indicate a leakage increase
from zero at about 10 m to the infiltration rate at about
25 m, as depicted in Fig. 1.32. The relatively smooth

breakthrough results from the complex layered struc-
ture of this capillary barrier. The breakthrough curve is
slightly ahead for the upstream weighting. An evalua-
tion of Ross’ analytical formula® using the above van
Genuchten parameter for the sand and gravel zones
(Table ) gives a diversion length of 17.9 m. This value
is in good agreement with the present numerical simu-
lations as seen in Fig. 1.32.

Figure 1.31 Simulated streamline patterns at # = 30 yr, TBFN for a) central and b) upstream weighting.
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Figure 1.32 Leakage/infiltration ratio in the tuff layer.

1.9 Closure

The primary variable switching technique has
proved to be a powerful and cost-effective solution
strategy for unsaturated flow problems. Compared to
conventional approaches based on the y -form and the
mixed y —s -form of the Richards equation, with either
Picard or Newton iteration, the primary variable
switching technique can reduce the solution effort by
orders. More specifically, for very dry initial condi-
tions, the primary variable switching technique appears
as the only practical way to get reasonable solutions.
This has been shown in a number of difficult examples.
The advantages of the primary variable switching tech-

nique can be summarized by the following items. It is

* unconditionally mass-conservative,

« very effective and robust for dry initial conditions,

*a Newton-based iteration method with quadratic
convergence representing a ’natural’ approach for
the approximation of highly nonlinear problems
combined to constrained relationships (primary
and secondary variables), and

+ a general analysis method suitable for single- and
multi-phase flow problems.

The price to be paid for the primary variable switch-
ing technique is in assembling and solving the unsym-
metric equation system at each time and Newton step.
For unsaturated flow the Jacobian can easily be con-
structed in an analytical manner to reduce the computa-
tional effort. For the most cases studied, however, the
increased effort in handling the unsymmetric system is
largely compensated by the fast convergence behavior.

Nevertheless, we do not claim to have a panacea for
all variably saturated flow problems. We presented a
wide spectrum of examples to benchmark the tech-
nique and compare our results with previous findings.
We found some differences. First of all, the iterative
solution procedure embedded in the primary variable
switching technique have proved to be of prime impor-
tance. We studied both a temporally error-controlled
predictor-corrector one-step Newton scheme (PCOSN)
and a commonly used'?!31424 target-based full Newton
scheme (TBFN). While the PCOSN satisfies a tempo-
ral discretization error at each time (and iteration) step,
the TBFN is controlled by the Newton convergence cri-
terion only and does not necessarily satisfy a discreti-
zation error. As a result, the PCOSN and the TBFN



schemes can provide different solution behaviors.
Roughly speaking, the PCOSN needs often more steps,
however, gives more accurate solutions. Its numerical
control is much simpler for practical use. Only one
control parameter, the error tolerance & , has to be spec-
ified. On the other hand, the TBFN often requires a
smaller (sometimes a significantly reduced) number of
steps to accomplish a simulation time. In analyzing the
discrepancies with the results of Forsyth et al.'* we can
conclude that the TBFN is somewhat seductive. Allow-
ing aggressive step sizes it appears as a fast and rather
comfortable procedure. However, in spite of iteration
convergence, TBFN results can possess large time trun-
cation errors, unless the target change parameters, and
accordingly the step sizes, are kept sufficiently small.
The selection of these parameters is empirical. In con-
trast, the PCOSN results are based on temporal discret-
ization requirements. Considering the examples
analyzed in this work we can draw the following con-
clusions:

(1) The primary variable switching technique is able to
handle any value of (negative) initial pressures. The
scheme remains mass-conservative for an arbitrary
time step size (see section 1.8.1.2).

(2) The primary variable switching technique provides
a much better convergence behavior compared to both
the mixed y — s -form and the standard y -form of the
Richards equation. This is independent of the used time
marching scheme (cf. Table 1.3). The efficiency of the
primary variable switchin% technique grows with
decreasing initial pressure v . The acceleration usually
ranges between 2 and 10, sometimes even more. The
primary variable switching technique seems to be the
only practical way to tackle unsaturated flow processes

at very dry initial conditions.

(3) The time marching procedure and iteration control
influence significantly the solution efficiency. The
adaptive PCOSN scheme satisfies a predefined tempo-
ral discretization bound and usually requires more time
and Newton steps at dry initial conditions than the
TBFN scheme. Depending on the problem and the con-
trol parameter enforced, the TBFN can be three to six
times faster than PCOSN (sections 1.8.1.1, 1.8.1.2,
1.8.4.1, and 1.8.4.2).

(4) As soon as a fully saturated zone occurs (perched
water table problems) the PCOSN becomes superior
and more effective (sections 1.8.2 and 1.8.3), unless a
more complex time control is used for the TBFN.

(5) The TBFN procedure does not guarantee a temporal
accuracy. Resulting errors can be significant and some-
times larger than spatial discretization effects (see Figs.
1.16, 1.17 and 1.18; Figs. 1.3, 1.4 and 1.9). TBFN sac-
rifices temporal accuracy in favor of accelerated con-
vergence.

(6) The time marching schemes are formulated for both
a first-order accurate (FE/BE) and a second-order accu-
rate (AB/TR) strategy. For the primary variable switch-
ing technique we find that the fully implicit FE/BE
scheme is more robust and should normally be pre-
ferred. This is in contrast to a standard y -form, where
the higher-order AB/TR scheme works very well. In
the primary variable switching technique numerical
disturbances for the AB/TR scheme can be generated
by the acceleration vectors X occurring in both the
Jacobian and the residual (see eqns (1-20), (A1) and
(B1)). To improve the situation and gain further
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insights, additional investigations are required for
higher-order schemes applied to the primary variable
switching technique.

(7) The upstream weighting technique used in this work
is easy to implement for the finite element method. It
can eliminate spurious local maxima and minima in
coarse meshes (Figs. 1.20 and 1.21). Upstreaming is
associated with a phase lead error which can often be
tolerated with respect to the remaining errors.

(8)In simulating capillary barrier problems the situa-
tion is rather mixed. If the initial pressure is moderate
there is no need to prefer variable switching since the
primary interest is in steady-state solutions. Otherwise,
if perched water develops, the convergence behavior is
quite poor for a TBFN iteration strategy and a PCOSN
method becomes more effective. On the other hand, for
very dry conditions with no perched waters the variable
switching technique with the TBFN strategy cannot be
beaten (sections 1.8.5.1 and 1.8.5.2).

(9) The deviatory convergence criteria in form of L,
(1-43) and L, (1-44) error norms are basically
employed in the one-step Newton (PCOSN) scheme.
The same criteria are utilized for the TBFN in the
present work. In the examples it has been shown that
the overall iteration process can be reasonably con-
trolled and global mass balance errors remain suffi-
ciently small. However, in certain situations (e.g., sharp
parameter contrasts) we find a stronger criterion in
form of the maximum L_ norm is to be preferred to
limit the global mass balance errors below a certain
level, so as done in the capillary barrier simulations.
Here, the direct (or additional) use of a residual conver-
gence criterion such as eqn (1-53) would improve the

global mass balance control (for sure, one would termi-
nate the Newton iteration only if the residual satisfies
the roundoff error). Such a criterion can be simply
incorporated into the TBFN. But for the predictor-cor-
rector technique, the Newton iteration can no longer be
restricted to only one step and, as a result, two user-
specified tolerances are necessary. This is a subject of
further investigations.

The above simulations refer to 2D (1D) problems
for which comparable results are available. However,
the schemes discussed in this paper have been devel-
oped for both 2D and 3D applications. The present
computations were performed with the FEFLOW®
simulator®.
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Appendix A

Jacobian JV for the pressure head ¥
as primary variable

The derivative of the residual (1-20) with respect to
the pressure head ‘PZH at the new time plane n + |
and the current iterate t yields the following expres-
sions (I, J,L = 1,...,M):
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The partial Jacobians in eqn (A1) are obtained as fol-
lows
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The derivatives C',"' and G;' are given functions

which can be evaluated either analytically from the
parametric models (1-3)-(1-6) or numerically from
chord slope approximations (Appendix C) for the
known variables s and  at the iterate t, the node J
and the time plane n + 1 . Here, CZ+ ' is the moisture

capacity function known from the standard unsaturated
modeling.
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Appendix B

Jacobian J' for the saturation s as pri-
mary variable

The derivative of the residual (1-20) with respect to
the saturation s:H at the new time plane n+ 1 and
the current iterate t yields the following expressions
(LJ,L =1,...M):
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The partial Jacobians in eqn (B1) are obtained as fol-
lows
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which can be either derived analytically from eqns (1-
3) and (1-5) or numerically by using chord slope
approximations (Appendix C). Notice, it is necessary



to use the pressure head y instead of the hydraulic
head 7 to evalu+ate the moisture ca]pac1ty functions
' and Ci/ . Actually, C?;' can also be
expressed by & smce 9s/0y = 0s/0h, but the inverse
moisture capacity CTJ is not simply invertible for %

because oy /0s = 0h/0s—0z/0s .

Appendix C

Chord slope approximations of satura-
tion derivatives

In contrast to analytlcal derivatives in form of the
moisture capacity C" (A7) and its inverse C:
(B7) chord slope approximations can be useful and
effective. Within the predictor-corrector one-step New-
ton scheme proposed here the derivative terms are
evaluated by using the predicted solutions (1-35), (1-
36) for the current time plane »n + 1. For instance, a
simple first-order accurate finite difference approxima-
tion of €' would lead to
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Since only one iteration per time step is employed for
the present predictor-corrector one-step Newton tech-
nique the iterates indicated by the subscript t can be
replaced by the predictors denoted by the subscript p.
This yields

1
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It can be easily seen that this derivative is nothing more
than the quotient of the acceleration vectors (1-35) for
the saturation and the pressure head

N
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which represents a chord slope approximation of the
saturation derivative applied to the first-order accurate
BE scheme.

A corresponding second-order accurate chord slope
approximation suited for the TR scheme can be simi-
larly derived using eqn (1-41) as
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The chord slope al‘l)prox1mat10ns for the inverse mois-
ture capacity Ty pl yield equivalent expressions.

Note here that limitations exist for the chord slope
approximations if the denominator of eqns (C3) and
(C4) tends to zero. Practically, below an absolute mini-

. . ~18
mum difference tolerance (typically we use 10 ° for
the pressure head and 10® for the saturation) the eval-
uation of the derivative becomes an analytical (exact)
procedure.
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Treatment of free surfaces in 2D and 3D ground-
water modeling

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

ABSTRACT

The present paper aims at a discussion of the numerical
requirements and efforts for the finite-element modeling of
transient free surface(s) flow and transport problems in two

Nomenclature

Latin symbols

and three dimensions. Following aspects are emphasized: A curve-fitting parameter;
(1) Classic groundwater against unsaturated-saturated mod- B curve-fitting parameter;
eling approaches. (2) Moving mesh approaches versus fixed 3 .
grid strategies for multi-layered aquifers with their advan- G, Co ML concentration and reference
tages and drawbacks. (3) Generalized boundary and con- concentration of a miscible chemical
straint conditions for flow and transport modeling needed species, respectively;
for a free-surface analysis. (4) Introducing the BASD (Best- C(vy) Lil moisture capacity storage;
Adaptation-to-Stratigraphic-Data) technique as a new f s 2,721 . . .
numerical strategy to automatically adapt the location of €€ L'r-e Spe.Clﬁc heat.capémty of fluid and
water table(s) to all relevant data of a hydro-stratigraphic P solid, resp ectlvel}'/, ) )
initial structure with parameter discontinuities. (5) Theoreti- D LT tensor of mechanical dispersion;
cal basis of a pseudo-unsaturated modeling approach and its D M L2 T_1 molecular diffusion in the porous
limitation. medium;
The impact of the numerical approaches is studied for . .
selected applications: (i) benchmarking moisture dynamics e ! gravitational unit vector;
in homogeneous and layered soils, (ii) drainage experiment, G quantity;
(iii) dam seepage modeling, (iv) benchmarking the mine g L T’2 gravitational acceleration;
flooding for a generic 3D pit geometry, and (v) real-site h I hydraulic (piezometric) head;
modeling of complex flow and contaminant transport prob- ’
lems. 1 1 unit tensor;

K L7 tensor of hydraulic conductivity for
Key words: groundwater, free-surface problems, unsatur- the saturated medium (anisotropy);
ated-saturated porous media, finite-element method, mesh k L2 tensor of permeability for the

adaptation, moisture movement, dam seepage, mine flood-
ing

saturated medium (anisotropy);
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K 1 relative  hydraulic  conductivity X L Eulerian spatial coordinate vector;

(0<K,<1,K, =1 if saturated at z L elevation above a reference datum;
=1 z: L elevation vector for slice s and at

m 1 1-1/n curve-fitting parameter time level n;

(Mualem assumption);

N number of intersections; Greek symbols

N; finite element shape function at node
i ~ . .

. . o ’m! solutal expansion coefficient;

n 1 normal unit vector (positive .

. o curve-fitting parameter;
outward); . i )

n 1 n>1, pore size distribution index, p © thermal e?(pansmn coefficient;
approximately in  the range p curve-fitting parameter;
1.25<n<6; BBy L longitudinal and transverse

p/ ML'T? fluid pressure; dispersivity, respectively;

0, 7! fluid flow sink/source; B boundary;

Oc ML3T" bulk mass sink/source; Y L fluid compressibility;

0 ML'T  bulk thermal sink/source; At, r time increment at level n;

Qi, Q) ML'T fluid and solid thermal sink/source, O Kronecker operator;
respectively; € 1 porosity (0 <e<1);

q LT Darcy flux vector; €, 1 effective porosity at the free surface;

q, normal flux on a boundary (positive o 1 se , volumetric moisture content
outward); (0<0 <e, 0 = ¢ if medium is

R, R, 1 retardation and derivative ; saturated);
retardation, respectively; 0, 1 residual ~ volumetric ~ moisture

R, L7 infiltration or evaporation rate on a ; content;
free surface; 0 1 saturated  volumetric =~ moisture

S areal property; 71 content;

S ! storage coefficient; 3 T chemical decay rate;

f 1 saturation of the fluid phase K p 1 o curve-fitting parameter;

0< s/ <1 s/ =1 if medium is A MLT "© tensor of thermal hydrodynamic
; A ydrodyn.
saturated); dispersion of fluid phase;
effective saturation of fluid; kf, A MLT>®" thermal conductivity for fluid and

residual saturation of fluid; solid, respectively;

1.2 . L
maximum saturation of fluid: uf, ui ML T~ dynamic viscosity and reference
dynamic  viscosity of  fluid,

respectively;

N oA

@\NN

temperature and reference
temperature, respectively;
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Subscripts

Superscripts

I e N

fluid density and reference fluid
density, respectively;

solid density;
final time;
skeleton compressibility;

adsorption function to describe
Henry, Freundlich and Langmuir
isotherms;

pressure head (y >0 saturated
medium, yv<0 unsaturated
medium);

domain;

air entry;
property index
nodal indices;
intersected layer;

direction of gravity in the Cartesian
coordinate system;

reference value;
slice index;

time-dependence;

number of space dimensions;
element;

fluid (water) phase;

time level;

solid phase;

2.1 Introduction

Subsurface flow and transport phenomena involv-
ing free surface(s) represent a general and important
class of nonlinear problems. In the past, various
approaches and computational methods have been
established for solving groundwater free-surface prob-
lems in two and three dimensions with more or less
success. Most of them are constrained with respect to
the range of application and the practical motivation,
for instance, local-scale dam seepage problems,
regional groundwater flow modeling or moisture
movement in the vadose zone for soil columns have led
to quite different solution strategies'™'?. Generally, in
modeling free-surface problems two conceptual models
can be chosen: (1) the unsaturated-saturated modeling
approach and (2) the fully saturated, water-table, clas-
sic groundwater modeling approach (cf. Fig. 2.1). Each
of them has their advantages and drawbacks. While the
unsaturated-saturated approach involves the inclusion
of the entire flow domain in the analysis, the fully satu-
rated approach considers only the domain below the
free surface where the water table is treated as a mov-
ing material interface.

From the physical point of view the unsaturated-sat-
urated modeling approach provides the most rigorous
treatment of computing free-surface problems. How-
ever, its solution enlarges the computational effort and
has to tackle the strong nonlinearities in the governing
equations for flow and transport. In the numerical solu-
tion process convergence problems can occur, espe-
cially under dry conditions. Furthermore, in many
engineering applications the data of unsaturated char-
acteristics are often not available. For a specific site the
initial saturation states, capillary pressure and relative
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conductivity relationships are data which are often dif-
ficult to obtain.

a) b)
unsaturated zone
included - excluded

free surface

saturated zone

Figure 2.1 a) Unsaturated-saturated modeling approach
using a fixed (invariant) mesh, b) fully saturated classic
water-table modeling approach with a moving (variable)
mesh.

On the other hand, common groundwater water-
table models suffer from a number of limitations. The
conception of free surfaces in groundwater can fail for
complex applications, e.g., if there is no coherent water
table and free surfaces become highly dynamic and iso-
lated (trapped or perched water) which often happens if
the water table has a deep location or water utilization
(and drainage) in an aquifer system lead to partly dew-
atered regions while the layers above remains satu-
rated. Such processes combined with tasks of saltwater
intrusion or geothermal supply are very difficult to
solve without an unified unsaturated-saturated flow
approach. Otherwise, mesh adaptation due to free-sur-
face movement is difficult to control numerically, espe-
cially for complex aquifer systems with high parameter
contrasts and sharp zones of water depression. On the
other hand, the use of fixed (unmoved) meshes in a
conventional groundwater analysis can arise problems
if (a) parts of the aquifer fall ’dry’ because the handling

of such dry mesh cells is often heuristic and physically
’incorrect’ and (b) mass transport is to be modeled
because contaminants can be ’frozen’ in ’dry’ cells
instead of moving according to the water table.

The majority of today’s groundwater models for
free surfaces (unconfined, phreatic aquifers) deals with
the fully saturated zones only. Accordingly, it should
seem to be a standard and well-solved task. However,
the practical modeler can still report on a number of
lacks and troubles under real applications. The major
difficulties refer to the following: (1) The free-surface
problem is mostly solved only in a non-rigorous man-
ner, i.e., the kinematic boundary conditions are adapted
by ad-hoc approaches (e.g. by introducing an auxiliary
‘well-term’) such as done in the widely used package
MODFLOW?. Criticisms were recently summarized
by Yeh et al'® and Knupp!’. While Yeh' modeled
homogeneous 3D domains for which a moving tech-
nique is much simpler, Knupp!” developed an
improved moving grid technique for a finite volume
code which allows the computation of regional situa-
tions at complex stratigraphy and heterogeneous condi-
tions. However, its proposed algorithm permits motion
of only the upper portion of the grid. (2) Special han-
dling is needed if parts of the domain intermediately
become dry. There are different ‘tricks’ to overcome
such situations (e.g., frozen cells, converting proce-
dures, intermediate deletion of elements). Here is a
great influence of ‘dubious’ manipulations in ‘free’
computer codes. Accordingly, more general techniques
are required to attain robust, balance-accurate and non-
oscillatory solutions. (3) Multiple (more than one) free
surfaces in an aquifer system are often difficult to
tackle. The storage coefficients in the layered system
become strongly dependent on the dynamically wetted



element conditions. (4) The existence of free-surface
conditions in the context of contaminant mass or heat
transport processes, including density effects, forces to
a generalization of the solution strategy.

The present paper aims at an unified handling of
free-surface problems both in an unsaturated-saturated
approach and in the fully saturated modeling approach
embodied in one code to get more flexibility and
robustness in the numerical solution. The basic formu-
lation is based on the balance equations for flow, con-
taminant mass and heat transport in unsaturated-
saturated media with density and viscosity coupling
effects. Related boundary conditions and boundary
constraints are discussed for free surfaces, seepage
faces, ponding and drainage boundaries. The free sur-
face and seepage conditions represent kinematic for-
mulations which lead to a rigorous approach to solve
the flow and transport equations in the fully saturated
groundwater domain. For these purposes a more gen-
eral moving mesh strategy, called BASD, will be intro-
duced which is capable of computing movable finite
element meshes in three dimension even under general
stratigraphic heterogeneous material conditions. The
moving mesh technique is compared with the conven-
tional fixed grid technique for saturated flow and the
more  general  unsaturated-saturated = modeling
approach.

The motivation for the developments is in complex
3D and 2D flow and transport problems in mining and
water management problems. The impact of the used
strategies will be shown along the moisture movement
in unsaturated homogeneous and layered soils, drain-
age and seepage problems, a generic problem of pit
flooding and in modeling of real-site mining problems.

All developments and computations refer to the inter-
active groundwater simulation system FEFLOW?!.

2.2 Governing Equations

The governing equations for the unsaturated-satu-
rated flow, contaminant mass and heat transport are
derived from the macroscopic phase-related conserva-
tion principles for mass, linear momentum and
energy®. Let Q,c %’ and (0,Y) be the spatial and
temporal domains respectively, where d is the number
of space dimensions (2 or 3), and let ', denote the
boundary of Q,. The subscript ¢ implies the time
dependence of the spatial domain (if the domain
becomes time-invariant: Q,—»Q and TI',—»T). The
spatial and temporal coordinates are denoted by x € Q,
and ¢ € (0, Y). The following nonlinear system finally
results which has to be solved in two and three dimen-
sions:

(5, s/ +e-CIZ+V.q = 0, 2-1)

o)

- (2-2)

g =K )Kfp[Vh +
Po

sf(w)Rd(C)aa—f+ q-VC-V-[(es(y)D, I+ D)-VC] +

2-3
RS+ 0,1C = o T
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[ (w)ep'd + (1 —e)p’ 1% + /g - vT

ot
VW —en'n v+

+0/d0(T-T,) = 0,(w)

with the definitions and constitutive relationships

h=p—+z=w+z

S, = ey +(l1—¢)o

Cy) = "’—S;(W“’)

o = plll+a(C-C,)—B(T-T,)]

R(C) = e+ (1-¢)y(C)
RHC) = e+(1 78)8—[7‘(2' <l
D= (BFBT)‘%’anquz

A

- p/éfD + ssf(w)kfl
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0,(v) = s (Ve +(1-¢)0) (2-5))

2-4
@) To solve the nonlinear equations (2-1) to (2-4) for

h, q, C,and T under unsaturated-saturated conditions
constitutive relationships for the saturation-dependent
moisture capacity C(y) and hydraulic conductivity
K,(sf ) have to be specified in form of empirical rela-
tionships for the capillary pressure head-saturation
(2-5a) \y(sf ), with its inverse s/ (v), and for the relative con-
ductivities Kr(s/ ). The following parametric models
will be preferred?®:
(2-5b)
(1) van Genuchten-Mualem model:

(2-5¢)
;m for y<O0
S =01+ 4] (2-6)
(2-5d) 1 for y>0
2
1 1m
(2-5¢) AR {1 - (sf;)’"} @7)
(2-59)
with the effective saturation of fluid
(2-5¢) , :
s = J_S[ - o ef (2-8)
=5, 0[-0]

@-3h) 9y Brooks-Corey model:

(2-5i)



for y<-1/a
& = Jloyl” @-9)
1 for y=2-1/a
K
K, = () (2-10)
(3) Haverkamp model:
o
. for y<O0
= Ja+yP (@-11)
1 for y>0
4 2 for y<0
K, =44+l (2-12)
1 for y>0

The above strongly nonlinear parametric curves
describes the fluid saturation s/ (v) and the relative
hydraulic conductivity Kr(s/ (w)) as a function of the
pressure head y in an unique manner. They are contin-
uous over the entire range of y which is an useful fea-
ture for the numerical implementation. Under saturated
conditions =1 the nonlinearities in the parametric
relationships vanish, however, for free-surface condi-
tions a nonlinear boundary-value problem remains to
be solved.

2.3 Initial, Boundary and Con-
straint Conditions

2.3.1 Initial conditions

The initial condition on the hydraulic head 4, con-
centration C and temperature T are specified on Q) :

h(x,0) = hy
C(x,0) = C, (2-13)
T(x,0) = T,

It is obvious due to the above parametric relationships
the initial hydraulic head distributions represents at the
same time an alternate initial distribution for the pres-
sure head vy, fluid saturation s/ and the moisture con-
tent 0’

y(x,0) = y,
J(x,0) = S{) (2-14)
o/(x,0) = 0

2.3.2 Standard boundary conditions

Denoting l",1 and l"f two disjoint portions of the
total boundary T, = l"t1 ® l"f, the following formula-
tions for boundary conditions (BC’s) are specified for
the Eqn. (2-1) to (2-4),
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G = G, on Tr

1
! (2-15)
G _ 2
q, ta(G,-G) = b on I,
with the normal fluxes
_4
—{K (sf)KfH : [Vth o p"eﬂ ‘n
r 7
g = ; ’ (2-16a)
~[(es’"(w)DyL+D)-VC]-n
LN+ (1625 VT n
h
G={C (2-16b)
T

where on Ftl Dirichlet BC occurs and on th a more
general form of a Robin type BC is imposed. If « = 0 a
Neumann flux-type BC of 2nd kind results, while for
b = 0 acommon Cauchy BC of 3rd kind is given. In (2-
16a) n corresponds to the normal unit vector (positive
outward), G, and G, are prescribed boundary values
for h, C, or T on l"t1 and th, respectively. In the
present context some specifications of the boundary
conditions are becoming important which are described
next.

2.3.3 ’Drainage’
boundary conditions

gradient-type

Applied to unsaturated problems a Neumann

(a = 0) flux-type boundary condition in the form

{Kr(sf)Kf“ ~ [Vh + %{)p{’eﬂ n=gq

(2-17)

can be sometimes inappropriate, for instance if model-
ing a drainage boundary in the vadose zone with a bot-
tom outflow boundary condition for situations where
the water table is situated far below the domain of
interest. Here, a gradient-type boundary condition is
often to be preferred®*:

f_ S
{Kfu . (Vh + B_;/_Ei’en .n = qurad

o

(2-18)

On such a boundary it can be assumed the pressure gra-
dient diminishes Vy ~ 0 and since Vi = Vy +Vz, Eq.
(2-18) is practically applied in the following form:

rof
[Kfu'[Vz+p p/.p"e]]n = g,
o

Once Vz-n=#0 the boundary freely drains the flow
domain due to the influence of gravity.

(2-19)

234
tions

Free surface boundary condi-

The incorporation of free surface conditions is per-
formed via proper kinematic boundary conditions.
Starting point represents the conservation relationship
at a macroscopic surface of discontinuity??, the interfa-



cial free surface. It leads finally to the formulation:

Oh h
(Rn_sea)nl = =4, (2_20)
h=z

where n; corresponds to the component of the unit out-
ward normal vector n directed along the gravity direc-
tion (z-coordinate). As seen from Eq. (2-20) along a
free surface two boundary conditions are to be satisfied
simultaneously:

* a prescribed flux rate (as an infiltration or, if equal
to zero, then impervious) and

* the location corresponds to the hydraulic head
(constant pressure level)

which leads to a nonlinear boundary-value problem
because the location of a free surface is initially
unknown.

2.3.5 Seepage face boundary condi-
tions

A seepage face represents a specific free surface
condition for which the geometry as a part of the
boundary of the flow domain Q, is known, except for
the location of its end points?®. It reduces to a Dirichlet-
type condition of a prescribed hydraulic head condition
in the form

h=z (2-21)

Since the range of the seepage face is initially unknown
its solution also leads to a nonlinear task. Practically, it
can be solved by applying additional constraint condi-
tions on the boundary which will be described further
below. Commonly, a seepage face condition is imposed
on such portions where the balanced flux going
through the boundary is directed outward (it means the
seepage face exists only there where the boundary
drains the flow domain).

The seepage face condition # = z can also be con-
sidered as a reference head condition outside the flow
domain. As an alternate to (2-21) it can act as a
Cauchy-type condition in the form

qh = —a(z—h) (2-22)

n

where the transfer coefficient @ mimics a ’resistance’
to control the outflow through the seepage face (e.g., at
a dam covering).

2.3.6 Surface ponding boundary con-
dition

Surface ponding denotes a ’surface reservoir’
boundary condition of the type

oh h
(RD - E]nl =-q, (2-23)

which is similar to free-surface condition as situated in
an ’air layer’ for what the effective porosity becomes
unity (g, = 1). This condition permits water to build
up on the surface. The height of the surface water layer
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increases or reduces according to the rate R .

Alternatively, if the surface reservoir is deemed
infinity the boundary of the surface can be imposed by
a prescribed water table condition 4 = z as long as the
infiltration is associated with a water table above a
given elevation. This can be easily solved in combina-
tion with boundary constraints where a Neumann-type
BC is constrained by min-max hydraulic head bounds
in form of Dirichlet-type conditions.

2.3.7 Constraints of boundary condi-
tions

Constraints are limitations for all types of boundary
conditions. They result from the requirement that
boundary conditions should only be valid as long as
minimum and maximum bounds are satisfied. If during
a simulation run the conditions are exceeded or fall
below, the constraints are to be assigned as new inter-
mediate boundary conditions. As already indicated
above, seepage face conditions belong to this type: A
Dirichlet-type BC & = z is imposed along a boundary
on which a seepage face can potentially occur. Addi-
tionally, this condition is committed to the constraint
that the flux has to release (drain) the flow domain. In
such a procedure the flux through the boundary has to
be continuously checked (e.g., is O becoming positive
or negative) to decide on the acceptance of the original
boundary condition or on its intermediate replacement
by appropriate flux-type boundary conditions.

The formulation of constraints is based on the for-
malism of complementary conditions for a type of
boundary condition. Accordingly, a potential condition

(hydraulic head, concentration or temperature) is con-
strained by maximum and minimum flux relations
(fluid, mass or heat fluxes). On the other hand, flux
relationships are constrained by complementary poten-
tial limits, i.e., the fluid flux is constrained by min-max
heads, the contaminant mass flux by min-max concen-
trations, and the heat flux by min-max temperatures
(for more details see Diersch??).

For instance, the minimum and maximum con-
straints of a Dirichlet-type concentration will lead to
additional conditions in the following form (it reads:
the imposed boundary condition C = C,(¢) is accepted
only if the related mass balance flux Q. (and the
related hydraulic head #,) is within given min-max
bounds, if not, these bounds have to be used as new
boundary conditions, where the boundary type has to
be changed from a Dirichlet-type into a flux-type
boundary condition of a point sink/source Q)

1 max,
QC<QC (1)
and
Istkind C,(¢) only if Q'C>Q'Z'"'(t)
and

min, max,

K" <h <h

(2-24)

elseset O as an intermediate flux-type condition according to:

Q:“l(t) i {QICZ QZ“X](T) and hmml <h, Shman}

Oc = min . 1 min, min, max
Oc () if {0c<Q¢ (1) and i '<h<h™

min, max‘}

0 ity <h™™ or hy>h

where Qlc is the mass balance flux at the boundary



point to be computed while the C,; condition is
. max, min, . .

imposed, O~ and Q- = denote the prescribed time-
dependent maximum and minimum bounds, respec-
tively, and Q. represents a singular mass sink/source
to be set at the boundary point (node) instead of the
original Dirichlet-type boundary condition. Similar
expressions exist for the other types of boundary condi-
tions. This procedure allows the control of concentra-
tion at the boundary in dependence on both the
balanced flow conditions through the boundary (e.g.,

min, . .

Q- =0) and the location of possible free-surface
conditions within the bounds #™"", ”"“*. The latter is
very important for complex mine flooding processes as

studied by Diersch et al.?.

2.4 Finite Element Formula-
tions

The finite element method (FEM) is used to solve
the governing balance equations (2-1) to (2-4) with
their constitutive relationships (2-5a) to (2-12) and the
accompanying initial conditions (2-14), (2-15) and
boundary conditions (2-15) to (2-24) for both the
unsaturated-saturated approach and the fully saturated
approach. In the general case the spatial finite-element
discretization yields the following highly nonlinear
matrix system:

O(hi +S(h)h = F(h,q, C, €, T.7)
A(h)q = B(h,C, T
| (g = BOLCT)
P(h, ©)C+D(g, h, C, T)C = R(h,C)

Uh)T+L(q,h,C, T)T = W(h, T)

where h, ¢, C, and T represent the resulting vectors of
nodal hydraulic head, Darcy fluxes, contaminant con-
centration and temperature, respectively. Notice, the
hydraulic head # is strictly correlated with the pressure
head y and the fluid saturation s’ via the above defini-
tion and the constitutive equations. The superposed dot
means differentiation with respect to time ¢. The matri-
ces S, 4, O, P, and U are symmetric and sparse, while
D and L are unsymmetric, however sparse too. The
remaining vectors F, B, R and W encompass the right-
hand sides of equations. The main nonlinear functional
dependence is shown in parenthesis.

In solving the equation system for unsaturated-sat-
urated conditions the domain and the boundary can be
considered invariant, i. e., the used mesh becomes
fixed and independent of time: Q,—» Q, I', > I". This
represents a great advantage, but it is paid by an
enlarged solution domain and the strongly nonlinear
dependences which increases the computational effort,
partly dramatically.
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| Does flow violate constraints? |7

]
I Adapting 3D finite element mesh
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------- i Time step control for flow errors

transport eq

| Does contaminant transport violate constraints? |7

g - - - i Time step control for contaminant transport errors |
Solving heat transport eq |<
1
| Does heat transport violate constraints? Ii

-t - - - - - -I Time step control for heat transport errors

Solving

|

Time loop

Figure 2.2 Adaptive strategy for transient free-surface
flow, mass and heat transport.

The nonlinear equation system is temporarily dis-
cretized by predictor-corrector two-step marching
schemes?® of a first and second order accuracy in time.
For the present nonlinear problems the Newton method
is preferred for the unsymmetric transport equations,
while Newton method can be omitted in the flow equa-
tions to maintain the symmetric property of the matri-
ces.

Figure 2.2 indicates how the solution process is
cycled for each equation inside the time loop if con-
straint conditions occur. The proposed adaptive strat-
egy allows an accurate and non-oscillatory solution
even for ill-posed problem formulations.

For solving the resulting large sparse matrix sys-
tems appropriate iterative solvers for symmetric and
unsymmetric equations are applied. For the symmetric
positive definite flow equations the conjugate gradient
(CG) method is successful provided a useful precondi-
tioning is applied. Standard preconditioner such as the
incomplete factorization (IF) technique and alterna-
tively a modified incomplete factorization (MIF) tech-
nique based on the Gustafsson algorithm are used.
Different alternatives are available for the CG-like
solution of the unsymmetric transport equations: a
restarted ORTHOMIN (orthogonalization-minimiza-
tion) method, a restarted GMRES (generalized minimal
residual) technique and Lanczos-type methods, such as
CGS (conjugate gradient square), BICGSTAB (bi-con-
jugate gradient stable) and BiCGSTABP (postcondi-
tioned  bi-conjugate  gradient  stable). For
preconditioning an incomplete Crout decomposition
scheme is applied. Commonly, BiCGSTABP is the first
choice in the practical simulation of large problems.

Under saturated conditions the most of the #-depen-
dencies in the matrix expressions vanish and the matrix
system gets a much simpler form:

(2-26)



Oh+Sh = F(h,q,C,C, T, T)
Aq = B(C, T
_ q (C,T) @27
P(C)C+D(q,C, T)C = R(C)

UT+L(q,C, T)T = W(T)

where the remaining nonlinearities result from possible
density and viscosity coupling effects. However, the
free surface condition introduces a A-dependence in the
solution domain Q, = Q(h) and the boundary
I', = T',(h). Accordingly, the mesh has to be adapted to
the changed geometric relations during the simulation.
This requires a moving mesh strategy which will be
discussed further below.

In the preferred finite element method the free-sur-
face boundary condition (2-20) is directly incorporated
into the flow equations of (2-26) as written for the dis-
cretized 2nd order trapezoid rule

(i—Z+S) = 0( tnh +hn)+Fn+l

Y

(2-28)
0, = |[[[s NNaa+] | seNiN,n,dr]

e o° ]";

s

where n represents the time level. For saturated free-
surface conditions the storage matrix O consists of two
parts: a volume integral for the material compressibil-
ity and a surface integral for the storage of the material
interfacial (fillable/drainable) property at the free sur-
face.

In contrast to (2-28) the computation of the storage

under unsaturated-saturated conditions is quite differ-
ent. Here the O -matrix holds the form:

e jg{js (s’Nk)NNdQ+HJ[ Nk]NNdQ]

(2-29)

It reveals two volume integrals, where the second inte-
gral on the right-hand side involves the moisture capac-
ity storage term which is highly nonlinear and
dependent on the chosen capillary pressure head rela-
tionship as defined by the expressions (2-6), (2-9) or
(2-11). Notice, for unsaturated conditions it has been
shown?”28 the consistent matrix O is to be transformed
into a lumped matrix

0, - [ o[ el J[ Nk}mJ

e

(2-30)

where here a row-sum (diagonal) scaling is preferred. It
guarantees mass-conservative and nonoscillatory solu-
tions.

2.5 BASD (Best-Adaptation-
to-Stratigraphic Data)

For moving meshes in a fully saturated modeling
approach an accurate and powerful technique is
required to align and join the spatially-varying parame-
ter fields according to the changeable free surface loca-
tions. Taking into consideration the parameters (e.g.,
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conductivity) often have high contrasts it should be
clear a formal interpolation of the parameters onto the
new mesh coordinates would lead to very poor solu-
tions. The idea of BASD is quite simple: adapting the
moving mesh as best as possible to the stratigraphic
initial mesh to minimize parameter interpolation. Slices
of the mesh are aligned in such a manner that the

adjusted mesh is exactly fitted to parameter discontinu-
ities if ever exist. Remaining slices can be shifted and
repositioned to get a well-spaced nodal distribution in
the depth without unnecessary mesh refinement and
coarsening if attainable. The principle of the mesh
adaptation process can be seen in Fig. 2.3.

=1 > t, 1=t > f
T TS —
K]
_______ free surface T
K, ¥ L =
K
3
KS
K3
7 oo rd o

Figure 2.3 Moving mesh BASD technique of parameter adaptation applied to 3D free-surface
problems: schematized example for a groundwater rise.

The initial stratigraphy consists of three layers with dif-
ferent conductivities. At the initial time ¢, the water
table is on a lower position. The mesh is accordingly
shrunk where the lower two layers completely fit into
the K, stratigraphy. However, the upper layer crosses
between the K, and K; stratigraphy and a special
treatment is here required. Such cross elements should
be admitted only if unavoidable. A proper 3D interpo-
lation technique has been developed which allows a
data joining for elements intersecting an arbitrary num-
ber of stratigraphic layers as described below. If the
water table ascends (Fig. 2.3 at time ¢, ) the moving
mesh totally fits the K, -K; stratum while the remain-
ing slice is used to subdivide the widest nodal spacing,

here in the K, layer. At later time ¢, a further rise of
the free surface occurs and the moving mesh slices
appear to be well aligned to the data stratification with-
out any need of interpolation.

The working steps of the BASD technique can be
summarized as follows:

(A) Compute the hydraulic head A" “! at the new time
level according to Eq. (2-28).
(B) Determine a new free surface location for the upper

slice s = top = 1 of the moving mesh
1 1
oy = B (50 (2-31)



satisfying the constant head condition of Eq. (2-20),
where corresponds to z-coordinates of the top
slice.

(C)Adjust and distribute the inner slices, indexed by s,
according to

n
ztop

n+1 rel, n
Zs = zrig +tL (zs - zrig)
s =2,..,rig-1; s =1=top (2-32)
rel _ , n+l n
L - (zt()p - zrig)/(ztap - zrig)

where z,,, is the firstly found rigid (nonmovable and
time-independent) slice counting from top (at least the
lowest slice describing the aquifer base is rigid) and
L™ the relation lengths. Special nesting rules have
been developed as for the subdivision of overdue slices

within layers enclosed by two rigid slices:

n+1 n+1 1 upper lower
Zs ETES (zrig _zrig )
ng+ny,

(2-33)

upper lower .
where z,77" and z,;; " are the z-coordinates of the

upper and lower rigid slice, respectively, n, is the
number of primary subdivisions and #, the number of
overdue (hanging) slices caused by slice shifting.
(D)Assign the parameter arrays according to the new
layer positions. Two cases exist: (a) achievement of full
alignment (no interpolation) and (b) data interpolation
and joining for cross volume elements.

(E)Find out cross elements and join their properties.
The joining process differs between volume-specified
materials (such as conductivity, compressibility) and
area-specified data (such as effective porosity). For
volume-specified material data Gauss-Legendre

numerical integration is used to determine the partial
volumes 7, of a finite element intersecting the strati-
graphic contours. The material property K of the cross
element is computed by a partial volume-weighted
average as

1
K =73 VK, (2-34)
i

instead of using a harmonic average, where i runs over
the number of intersections N and K; is the property of
the intersected layer.

Similarly, a partial area-weighted averaging process
is preferred for areal properties. However, it has been
found a numerical integration is here insufficient. Ana-
lytical formulas have been developed to determine
exactly the intersected areas of an element. It leads to a
‘telescope’ sum in the form

1
i A i—1,i—1 ! i
§= Z(xglelrwu Az S+ (A3 (1-25,))S,  (2-35)

i=1
N+1

i-lyio1 i i
Y (g A Ay h)S;
i=i+1
with the weights
—— i =1,...N 2
by = ———— i=1 .., (2-36)
],h”_Z”
i
h,—z,

written for prismatic pentahedral elements, where S
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and S; are the averaged and partial areal properties,
respectively, , and z, correspond to the hydraulic
head and the stratigraphic z-coordinates at node »,
respectively, and the index / represents the /th inter-
sected layer for which the partial area is not a triangle,
generally a pentagon. Equivalent averages can be
derived for hexahedral elements.

The use of the BASD technique for a complex
multi-aquifer system can be seen in Fig. 2.4. It indi-
cates how the mesh fits and moves through the com-
plex stratigraphy consisting of a number of aquifers
and aquitards.

slice alignment
(area of interpolation)

perfect slice fit

Figure 2.4 Moving mesh BASD strategy in a complex 3D stratigraphy (122,775 nodes and 226,394
elements): 3D model cut view (distribution of conductivities) and moving mesh along a cross section

(initial stratigraphy versus adapted slicing).



2.6 Pseudo-Unsaturated Mod-
eling Approach

Indeed, moving mesh strategies for adapting the
free-surface location complicates the computational
process. Furthermore, if the free surface is not on the
top position of the schematized aquifer system or if
there are more than one free surface in the aquifer sys-
tem (e. g., an additional free surface in a lower posi-
tion) the problem cannot be solved alone on the basis
of moving meshes. In these cases fixed mesh tech-
niques become inevitable. It is a common practice in
classic 3D groundwater modeling for flow in uncon-
fined aquifers to use exclusively fixed grids (e.g.2%%).
Fixed grid techniques have to mimic, more or less,
unsaturated flow conditions to control the solution pro-
cess for saturated, partly saturated or completely dry
grid cells. Since a physically true unsaturated flow
approach is avoided, such kind of unsaturated flow
modeling represents only a physical approximation and
quite different forms of implementation can be found in
the literature (see discussion in Knupp!”). Often, there
is actually no rigorous physical basis in modifying the
saturated flow conditions to achieve pseudo-unsatur-
ated flows. Practically, the scaling of conductivity is
used as a contrivance to obtain the solution in the satu-
rated domain. For instance, the conductivity is assigned
to a very small constant value as soon the pressure head
becomes negative: K/1000 for y <0 and K if y >0,
Apparently, this is a crude controlling procedure since
it does not differ between the degrees of saturation of
the elements. Desai and Li'! have improved the tech-
nique for finite elements by introducing linear relation-
ships of conductivity and storativity as function of the
pressure head y . The linear functions operate as multi-
pliers to the conductivity and storage terms ranging

between maximum (saturated) and minimum (residual)
factors.

The here proposed method is similar to Desai and
Li'', however, instead of prescribing an auxiliary linear
pressure relationship the water (pseudo-)saturation
computed for a finite element is used to ’down-scale’
all balance terms in a natural way. The pseudo-satura-
tion sg, is determined from the actual filling height of
water in an element:

spw) = =8 2-37)

Accordingly, the pseudo-saturation becomes related to
the actual geometric condition of the used spatial dis-
cretization. It provides a geometry-consistent scaling of
balance terms and has proven superior to a simple
parameter-switching as stated above. An element e is
considered saturated if y >0 at all nodes of the ele-
ment. Then it becomes dQ' = dQ and sjpz 1. An ele-
ment e is considered partially saturated (pseudo-
unsaturated) if y changes its sign at the element nodes
(e.g., w<0 for the upper nodes and v >0 for the lower
(at least one) node(s). Then it is approximately
dQ ~ dr “Wiower- AN element e is considered fully
unsaturated (or dry) if y<0 at all related element
nodes. Since d© have to be positive the volume must
be constrained by a minimum. Practically, a minimum
filling height (e. g., | mm) is employed to limit Pl
This leads to a measure of a residual pseudo-saturation
in such an element.

Using the expression (2-37) in the finite element
equations (2-26) it leads to a natural approach for eval-
uating the corresponding integral terms in a weak solu-
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tion. For instance, the part of the conductivity term of
the flow equation takes the form:

III(VN. K- VN)dQ (2-38)

“1fon
g

K- VN)sp(y)d2

K,K - VN))dQ

introducing a relative conductivity K, = s;(\u) as a lin-
ear function of v . Similarly, the storage term results as

o v fos] e

rr

As seen the volume compressibility becomes a lin-
ear function of the pressure head y too. On the other
hand, the surface integral which describes the kine-
matic free-surface boundary condition (2-20) is related
to the geometric shape l"f formed by the ﬁlling
heights in the corresponding element (notice, while l"j
is the free surface facet which is built by an element
(top) surface for moving meshes, accordingly l";-s is a
part of the adapted boundary geometry itself; at fixed
meshes I',. ~ lies in the interior of an element, accord-
ingly the integral has to be evaluated for a surface
which is spanned by the y heights).

It should be emphasized a pseudo-unsaturated mod-
eling approach is suited to compute the location of a
free surface, but, it is widely inappropriate to model a
true unsaturated flow regime. The advantage is in its
simplicity and robustness, but it is generally inferior to

a moving mesh strategy with respect to the attainable
accuracy.

2.7 Applications

2.7.1 Moisture dynamics in homoge-
neous and layered soils

First, let us study true unsaturated flows in both
homogeneous and layered soils to show the capabilities
and the requirements in simulating processes with vari-
able saturation.

The first example refers to Celia et al.’s water infil-
tration problem?’ to benchmark the present solution of
the unsaturated-saturated modeling approach for a
strong infiltration front development. Celia et al. pre-
ferred a mixed 6 —y -form of the governing Richards
equation to achieve accurate solution and sufficient
mass conservation. Unlike, the present model is -
based and embedded in a second order predictor-cor-
rector scheme for tackling the nonlinear solution pro-
cess by an error-controlled timestep adaptation.

A detailed problem description of the Celia et al.
problem is given elsewhere?”*! and only the major
characteristics are summarized: homogeneous soil col-
umn with a length of 1 m, van Genuchten-Mualem
parametric model (2-6), (2- 7) inusing n =2, (m=0.5),
A=335 1m, ¢ = 0.368, s =0.277, and = 1.0, sat-
urated hydraulic conduct1v1ty of 0. 922 10 m/s,
boundary condition of constant head y = -0.75 m at
the top and v = -10.0 m at the bottom, and initial pres-
sure head y, of -10.0 m. The same spatial discretiza-
tion characteristics are applied as given in Celia et al.,



who used Az = 0.5 cm (dense grid) and Az = 2.5 cm
(coarse grid). Otherwise, Celia ef al. used a constant
time step length of Ar = 60 s for the dense-grid simula-
tion.

A comparison with Celia et al.’s results gives very
good agreements. Figure 2.5 shows the computed pres-
sure profiles at time of 1 day for the case of the dense
grid (notice, Celia ef al.’s results are picked from a
table presented in’!, where however only selected sam-
ple points are listed).

o— 17— 17—

Pressure [kPa]

e—=o Celiaetal
Present
80 -

-100 o1 Y%——e——e—e
0.0 0.2 0.4 0.6 0.8 1.0

Depth [m]
Figure 2.5 Pressure profiles at = 1 day for the dense
grid: Celia et al’s © —\ -based solution?”! using a
mixed-form Picard iteration versus the present predictor-
corrector A-based solution using an adaptive time step-
ping.

Celia et al. used both finite difference and finite ele-
ment techniques. For the y -based Richards equation
(which should be equivalent to a A-based form) they
found nonoscillatory results only for finite differences,

while finite elements echoed wiggles at the moisture
front once coarse meshes were applied. They could
improve the results if resorting to a modified Picard
iteration technique based on a mixed 6 — y -form of the
governing Richards equation.

= -
-
24

° J
3
%

8 ]
-

L Az= 0.50 cm 4

Az= 2.50 cm .
80 - Az=16.67cm i —
-100 I 1 I 1 I L_l_'_zﬁm
0.0 0.2 0.4 0.6 0.8 1.0
Depth [m]

Figure 2.6 Pressure profiles at # = 1 day for different
grid spacing Az computed by the present predictor-
corrector technique with a /-based form of the Rich-
ards equation.

These difficulties as reported in?’ are completely
prevented in the present predictor-corrector technique
even for coarse meshes. Figure 2.6 displays the pres-
sure profiles for different spatial discretizations. It
reveals three things: Firstly, the proposed numerical
technique gives wiggle-free solutions. The loss of
accuracy against the dense grid solution is similar to
that as observed by Celia ef al. (for more details see?’).
Secondly, the accuracy of the solution is significantly
influenced by the spatial (and temporal) discretization.
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That means, the simulation of unsaturated flow pro- phase error in the moisture profiles can occur, but,
cesses requires sufficiently refined meshes. Thirdly, a unfortunately, the effect of phase lag or lead does not
50 % moisture profile centre point would not necessar- appear as a simple function of grid spacing (compare
ily serve as an accurate identification of a possible free also?’).

surface location. As evidenced in Fig. 2.6, in depen-

dence on the mesh refinement a leading or lagging
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Figure 2.7 Simulated moisture-content profiles during infiltration: present solutions (left) and van Genuchten’s
results'> 31 (right), time in days.

86 | White Papers - Vol. |



The second example concerns the simulation of the
moisture movement in a layered soil as studied by van
Genuchten's. A soil column with a length of 170 cm
includes 4 layers: clay loam (0-25 cm), loamy sand
(25-75 cm), dense material (75-87 cm), and sand (87-
170 cm), where the loamy-sand layer’s properties
change gradually with depth. The initial conditions for
the flow are given by y, =-3.5 m. A constant flux is at

0.00 ——
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Depth [m]
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the surface ‘IZ =-0.25 m/d at ¢ < 1 day (infiltration) and
qﬁ = 0.005 m/d at 7> 1 day (evaporation). At the bot-
tom a drainage gradient-type BC (2-19) of

ﬁgmd = —(-1)-K|,, .= 4 m/d is imposed, accord-
ingly, the bottom boundary can freely drain. The
parameter in the constitutive relations (van Genuchten-

Mualem model) can be found in®'.
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Figure 2.8 Simulated moisture-content profiles during redistribution: present solutions (left) and van Genuchten’s

results!>3! (right), time in days.
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A comparison between the present solutions and the
results obtained by van Genuchten'> who used a Her-
mitian-finite element approach is exhibited in Figs. 2.7
and 2.8. Figure 2.7 displays the simulated moisture-
content profiles during the infiltration period at
t<1day. The moisture-content histories during the
redistribution phase at 7> 1 day of the soil column are
seen in Fig. 2.8. As shown the agreement of the results
is nearly perfect.

2.7.2 Drainage experiment

Vauchaud et al3? reported experimental results
which referred to a ditch-drained soil problem. Their
results are useful for proving and comparing numerical
schemes applied to a typical drainage problem as
already done by Gureghian®®, Niitzmann** and
Nguyen®. A half drain-spacing with a length of 3 m
and a height of 2 m is considered (Fig. 2.9).

ho_
4, =~V

unsaturated zone
h
4, =0
initial water table
{- transient water table
h
_____ q,=0
v =0 ho
R saturated zone
hs
— hW
v =h,-z

h
4, =0

Figure 2.9 Sketch of Vauchaud e al.’s drainage experiment’?: geometry and boundary conditions.

Initially, the water level in the box is at z = A, and the
system is under hydrostatic equilibrium y, = h;—z.
The soil is assumed to be isotropic with a saturated
conductivity of K = 1.11- 10 *m/s. The Haverkamp
parametric model (2-11), (2-12) is used for the unsatur-
ated soil with o = 0.063396m, 4 =3.6-10 'm,
e=03, s,=1 and 5. = 0. The initial head h, is
given by 1.45 m. The water level of the ditch 4, is
0.75 m. The magnitude %, represents the elevation of

the seepage face which is 4, = h, at r = 0 and have to
be determined in the solution process (so as stated in
Section 2.4). In Vauchaud ef al.’s experiment the drain-
age process has been performed without any infiltra-
tion (v = 0 on top, Fig. 2.9). Accordingly, the water
table descends continuously up to reaching the water
level h,, of the ditch. Figure 2.10 compare the present
numerical results with Vauchaud et al.’s experimental
data. As seen the agreement is quite well.
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Figure 2.10 Descending water table of the drainage experiment: simulated free-surface locations (left) and water tables

measured by Vauchaud et al.? (right), times in hours.
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Figure 2.11 Hydraulic head contour and water table location at ¢+ = 1 hour: present results (left) and Gureghian’s

solutions®*33 (right).
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Numerical results are given by Gureghian®*. How-
ever, its solutions are based on a non-zero infiltration
rate v. A comparison of the hydraulic head contours,
the water table and capillary fringe at time of
¢t = 1hour is presented in Fig. 2.11 between the present
solutions and Gureghian’s results. The agreement is
satisfactory. Differences appear for the upper head con-
tours which obviously results from different descrip-
tion of the infiltration boundary condition.

2.7.3 Dam seepage

This example is that of a transient seepage through
an earth dam. The cross-sectional view and the applied
finite-element mesh is displayed in Fig. 2.12. The sim-
ulations are performed to study hydrodynamic influ-
ences and effects in constructing a dam. A situation is
considered where the horizontal drain of the dam fails
and the drainage occurs at the dam toe and the seepage
face along the slope. Figure 2.13 exhibits the simulated
free surface development and the finally reached flow
net if the dam consists of a homogeneous material of

15m

sand. As revealed in Fig. 2.13 the free surface reaches
the dam toe where large flow gradients occur.

Expectedly, if the dam is built with a sloping core
the flow regime is significantly altered. Figure 2.14
shows the simulated water table history in the dam and
the equipotential and streamline pattern after reaching
the final time stage. As one can see in Fig. 2.14 the zero
pressure surface may intermediately have an inverted
shape. It results from the antecedent moisture condi-
tions in the unsaturated zone (redistribution of the ini-
tial moisture content). It is apparent, this situation
cannot be handled with a classic free-surface modeling
approach.

A 3D extension of the dam seepage problem is
exhibited in Fig. 2.15 for studying the flow regime if
the horizontal drain of the dam is only partially opera-
tive. It reveals how drain elements positioned at the
dam toe and at a given distance can effectively dewater
the downstream part of a dam consisting of homoge-
neous sandy material.

70 m

Figure 2.12 Earth dam with finite element tessellation.



a)

Figure 2.13 a) Advance of free surface (y = 0) in time after raising the water level in the reservoir, b) com-
puted flow net (equipotential and streamlines) for the steady-state seepage.

a)

A . =

b)

==

Figure 2.14 Solutions at a sloping core of the dam: a) advance of free surface (y = 0) in time, b) computed
equipotential and streamlines for the steady-state stage.
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Figure 2.15 Computed 3D water table (v = 0 isosurface) for a homogeneous earth dam if partial drain elements operate.

2.7.4 Generic pit flooding test case

To compare the moving mesh strategy against fixed
grid techniques of the pseudo-unsaturated modeling
and the true unsaturated-saturated modeling approach
let us consider a simplistic mine with a given pit geom-
etry as shown in Fig. 2.16a. The pyramidal pit body
will be filled by a water discharge of 792 m3/d. The pit
is initially dry (air-filled) and we assume for this in-pit
domain a hydraulic conductivity of 100 m/s and stor-
age coefficients of ¢, = 1 and S, = 0. The surround-
ing aquifer is considered impermeable, i.e.,
K =10 m/sand g, = S, = 0. As the solution the fill-
ing curve & = h(?) is to be determined. For the given
case an analytical solution for the filling water height
can be derived

h = 3/1000+5.94-t—10

(4 in meters, ¢ in days)

(2-40)

Using the moving mesh only two layers are sufficient
to describe exactly the stratigraphic relationships of the
pit (Fig. 2.16b), where the upper layer represents the
‘air’ domain to be filled. On the other hand, using the
pseudo-unsaturated modeling approach a fixed mesh
requires more layers to adapt reasonably the slope
geometry of the pit. We choose 5 layers as shown in
Fig. 2.16c. As the result, the example has been proven
to be a superior test case to study the accuracy of the
different mesh strategies and algorithms regarding the
geometry-determined temporal storage in the flooding
process of the pit. As evidenced in Fig. 2.16d for the
computed filling curves the moving mesh gives an
excellent agreement with the analytical solutions while



the common fixed mesh strategy apparently yields
quite erroneous results. The parameter alignment and

a) bo =600 m

head [m]

+

——  moving mesh

analytical

v fixed mesh

L
i time [d] 5000

It is interesting to know whether a true unsaturated-
saturated modeling approach is also appropriate to sim-
ulate even open pit flooding processes. Clearly, an air-
filled mine body cannot be affected by capillary pres-
sure relationships. Nevertheless, the variable saturation
mechanism should allow to model the water table posi-
tion (as the zero pressure head) in the mine regarded as

joining techniques of the BASD retain a high accuracy.

I

\\‘l\l‘!““\l“!‘\‘\_ mlil"‘i\‘"—

Figure 2.16 Pit flooding test case: a) sketch
of the pyramidal pit, b) stratigraphic mesh
used for moving mesh solution with BASD
(2 layers, 3 slices, 2048 eclements, 3267
nodes), ¢) common fixed mesh (5 layers, 6
slices, 5120 elements, 6534 nodes), d) fill-
ing curves (head versus time) for the ana-
lytic solutions compared with the BASD-
based moving and pseudo-unsaturated fixed
mesh results.

a fillable ’porous’ room. The unsaturated approach
serves as a contrivance to smooth the numerical solu-
tions.

Applying the unsaturated-saturated modeling
approach to the 3D pit flooding test case the van Genu-
chten-Mualem parametric model withn =2, 4 =4 1/m,
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e =1, s/; =1- 1076, and séz 1 is assumed. The simu-
lated filling curves are shown in Fig. 2.17. It reveals the
following: The accuracy of the solution is strongly
dependent on the mesh refinement. Using only 4 layers
to approximate the pit body (equivalent to the above
pseudo-unsaturated approach) the obtained filling
curve is kinky and inaccurate. This is similar to
pseudo-unsaturated approach as exhibited in Fig. 2.16.
If more layers are applied the curve becomes a smooth
shape and approaches to the analytical solution (Fig.
2.17).

20 T

head [m]
)

U L L L L

analytical
5 6—o 4 layers
--------- 20 layers
oll— | . | . | . 1 .
0 1000 2000 3000 4000 5000
time [d]

Figure 2.17 Filling curves of the 3D pit geometry sim-
ulated by the unsaturated-saturated modeling approach
for different layer approximations in comparison with
the analytical solution.

The mesh effect of the unsaturated-saturated model-
ing approach can be better shown along a very simple
2D rectangular pit geometry. Here the filling curve is
simply given by 4 = (Q/b) - t, where an average width
of » =300 m is assumed. Varying the number of ele-

ments in the vertical direction one obtains numerical
filling curves such as displayed in Fig. 2.18. Appar-
ently, the unsaturated-saturated modeling approach
necessitates a sufficiently discretized approximation to
find reasonable solutions for this class of problems. It
becomes clear, moving mesh strategies are here supe-
rior.

i T T T T T T T T
20
i 240 elements ]
15 —

- 23 elements 4
! ]
R 0 [ 8 clements ]
] L analytical i

5 — —
0 P S B I R
0 1000 2000 3000 4000 5000
time [d]

Figure 2.18 Filling curves of a 2D rectangular pit
geometry simulated by the unsaturated-saturated mod-
eling approach: mesh effects (varying number of verti-
cal elements) in approaching to the analytical solution.

2.7.5 Real-site mining problems

To demonstrate the efficacy of the BASD-based
moving mesh techniques for real-site applications two
practical examples are considered. The first application
refers to flooding modeling of the Konigstein uranium
mine?+3%, The simulation of these pit flooding pro-
cesses represents a complex task due to the complicate



hydrogeological conditions, the existence of free sur-
faces, density effects, high parameter contrasts, diffi-
cult geometric forms of the pit with its wide-spread
network of adits, drifts, shafts, and open rooms, and the
specific contaminant sources resulting from the applied
in-situ uranium leaching of low-grade ores in sand-
stone blocks?%. Both regional models with more than
300,000 discretized elements and local in-pit models
were built up (Fig. 2.19a). The latter were used to sim-
ulate the hydraulic and contaminant transport processes
in an experimental flooding area. Figure 2.19b displays
the modeled hollow structure for the main stopes of the

A
%,

5%
o

g

%0, %

mine incorporated into the 3D finite element mesh
(Fig. 2.19a). A visual impression of the flooding
behavior is given in Fig. 2.20 exhibiting the water and
contaminant spreading in the pit area at two selected
time stages. At early times the water primarily floods
the stopes in the lower location, penetrates vertical con-
duits and begins to wet the blocks and ‘magazines’.
Contaminant matter is flushed out from the open stopes
and is activated in the rocks as soon wet. At later times
also the upper locations are under water and more and
more blocks activate their contaminant content.

Figure 2.19 Experimental flooding area simulation of the K&nigstein mine: a) used 3D mesh (89,130 nodes), b) modeled
main stopes by the BASD technique (isosurfaces of high conductivity).

A second example demonstrates the modeling a
flooding process of a deep mine near the sea where is a
threat of saltwater intrusion. Figure 2.21 exhibits the
used finite element mesh for studying the water table
rise and saltwater intrusion in the mine area. The

BASD technique is utilized to adapt the mesh accord-
ing to the rising water table and the 3D parameter
stratigraphy. Along a representative cross-section of
the 3D mesh as shown in Fig. 2.22 the effect of the
mesh moving becomes evidenced.
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Figure 2.20 Experimental flooding area simulation of the Konigstein mine: computed hydraulic head at = 0.1 d and
t =365 d (upper), simulated contaminant distribution at £ = 0.1 d and = 365 d (lower).
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Figure 2.21 3D finite element mesh for modeling regional
mine flooding and saltwater intrusion with the BASD tech-
nique.

Figure 2.22 Cross-sectional view of the mine: mesh mov-
ing in adapting the rise of water table and fitting to strati-
graphic properties.
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2.8 Closure

Subsurface free-surface problems in 2D and 3D
applications have been treated by both the unsaturated-
saturated modeling approach and the groundwater free-
surface modeling strategy. Fixed and moving mesh
strategies are used in dependence on the modeling
approaches. The finite element method is applied to
solve the flow, contaminant mass and heat transport
equations for variable saturation and free-surface con-
ditions. Generalized boundary and constraint condi-
tions are necessary to analyze free-surface problems for
practical usage.

Two major approaches have been raised: (1) vari-
ably saturated models with fixed meshes, and (2) free-
surface boundary condition models with adaptive
(moving) meshes. A pseudo-unsaturated modeling
approach as a further alternate is a physical approxima-
tion and represents neither a true physical unsaturated
flow nor an exact formulation of the free-surface
boundary conditions. Nevertheless, it is a widely used
conception in classic groundwater models for uncon-
fined aquifers.

A new method called BASD has been developed to
adapt automatically the finite-element mesh according
to the changing free surface. In this adaptation proce-
dure all relevant data from a hydro-stratigraphic initial
structure are transformed to the adapted mesh in such a
manner that parameter discontinuities are maintained
as best as possible (prefer parameter fit and snap before
parameter interpolation and smoothing).

In a number of examples the advantages and draw-
backs of the modeling approaches have been shown.

The unsaturated-saturated model represents the most
general approach and is appropriate for modeling com-
plex situations where the interaction with the vadose
zone is important and multiple or non-coherent free
surfaces occur. As exhibited coarse mesh approxima-
tions for unsaturated problems can lead to poor accu-
racy. Accordingly, an unsaturated-saturated model
works nicely, but only on a sufficiently fine spatial and
temporal discretization. A predictor-corrector tech-
nique with an adaptive time marching scheme of 2nd
order in time has shown to be very successful in solv-
ing the highly nonlinear equations for variable satura-
tion. In this way a h-based modeling approach gives
accurate results and the resort to mixed formulations
such as the 6-y-form of the governing Richards
equation is not necessary.

Since the true unsaturated-saturated modeling
approach normally needs finer meshes and conse-
quently increases the computational effort the classic
free-surface fully saturated modeling approach cannot
be beaten for regional groundwater problems. Here, the
moving mesh strategy with the BASD technique is a
powerful alternative. It has been successfully applied to
complex 3D flow and transport as exemplified for mine
flooding.

All described modeling approaches have been
incorporated in the finite-element simulation system
FEFLOW?!, In this way, they are coming in one hand
to choose the best-suited and most powerful method for
the problem to be studied.
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Error propagation in the Newton-based solution
control of unsaturated flow

H.-J. G. Diersch® & P. Perrochet?

YWASY Institute for Water Resources Planning and Systems Research, Berlin, Germany
bCentre d "Hydrogéologie, Université de Neuchdtel, Switzerland

ABSTRACT

The Newton method represents the numerical core of the
primary variable switching technique (PVST) which has
shown superior to conventional approaches in both unsatur-
ated flow and multi-phase flow modelling. In the context of
PVST empirically controlled strategies in time are rather
common, where the Newton convergence is attempted for a
possibly large step size. This technique is known as the tar-
get-based full Newton (TBFN) time stepping strategy. In
comparison to adaptive techniques satisfying a predefined
discretization error the TBFN results can be inaccurate in
spite of the achieved convergence in the Newton method.
The present paper aims at analysing the cause of discrepan-
cies in simulating unsaturated flows. This is done in com-
parison of analytical solutions which are based on
exponential constitutive laws.

3.1 Introduction

In contrast to Picard iteration schemes common in
solving the Richards equation for unsaturated flow in
porous media, the Newton method in combination with
appropriate strategies can reduce the solution effort by
orders. This has been shown by Forsyth et al. (1995)
who introduced the idea of the primary variable switch-
ing technique (PVST) to saturated-unsaturated flow

simulations. As the major advantages the PVST is (1)
unconditionally mass-conservative with respect to the
time step size, (2) very effective and robust for dry ini-
tial conditions, (3) a Newton-based iteration method
with quadratic convergence, and (4) a general analysis
method suitable for single- and multi-phase flow prob-
lems.

To control the overall iteration process Forsyth et al.
(1995) preferred an empirical target-based full Newton
(TBFN) time stepping strategy. Recently, Diersch &
Perrochet (1999) compared the TBFN with an adaptive
temporally error-controlled predictor-corrector tech-
nique one-step Newton scheme (PCOSN). In their
extensive numerical benchmark analysis Diersch &
Perrochet (1999) found that, in spite of the achieved
iteration convergence, TBFN results can be rather
depart from PCOSN findings, unless the target change
parameters, and accordingly the step sizes, are kept
sufficiently small. In continuing the analysis the
present paper aims at a quantification of the resulting
errors along analytical solutions for the Richards equa-
tion based on exponential saturation-pressure and con-
ductivity-pressure relationships.

FEFLOW | 101



102 | White Papers - Vol. |

3.2 Model Equations

The present finite-element model is based on the
Richards equation written in the following form

Rs,w) = S, s(n) QL + 2
V(K (WKLY + (1 +7)e]} ~0 = 0

(3-1)

which has to be solved either for y or s. In (3-1),

v pressure head, (v >0 saturated medium, vy <0
unsaturated medium);

s(y) saturation, (0<s<1, s = 1 if medium is satu-

rated);

time;

S specific storage due to fluid and medium com-
pressibility;

¢  porosity;

K. (y)relative hydraulic conductivity (0<K, <1,

K, =1 if saturated at s = 1);

tensor of hydraulic conductivity for the saturated

medium (anisotropy);

x  buoyancy coefficient including fluid density

effects;

gravitational unit vector;

specific mass supply;

residual;

~

K

e
o
R

Constitutive relationships are additionally required
(1) for the saturation s as a function of the pressure
(capillary) head v, as well as its inverse, the pressure
head v as a function of the saturation s, and (2) for the
relative hydraulic conductivity K, as a function of
either the pressure head v or the saturation s :

s = fv) wf%? 32)

K. = g(y) = g*()

Here, van Genuchten or Brooks-Corey parametric
models are common (cf Diersch & Perrochet, 1999).
Instead, if exponential constitutive laws are preferred
in the form

for w<y,

vy,

Il
2]
Il

s—5 expla(y +y,)]
¢ 1 for

(3-3)

>
Il
[N

analytical solutions of the nonlinear Richards equation
can be derived. In (3-3), vy, is the air entry pressure
head, s, is the residual saturation and a.>0 is a con-
stant.

3.3 Newton Method and PVST

The discretized form of the basic Richards equa-
tions (3-1) yields

R'x) =0 (3-4)
to be solved for a primary variable
Xe(Y¥,s) (3-5)

which can be either ¢ or s at the new time level n+1.
Applying the Newton method to (3-4) we solve

Jol s hax = R s (66)

T ’ST



with the increment

ax; =X ex (3-7)

T

and the Jacobian J* expressed in indicial notation as

n+1

oR]

n+tl n+l

‘Y, s )

+1 +1
IS = o
o tJ

(3-8)

where 1 denotes the iteration number. The PVST
selects the primary variable in a dynamic manner
depending on inner nodal criteria of the solutions, ¢ or
s. The derivatives of the Jacobian can be easily
switched between ¢ and s in accordance with the
computational requirements. Their computations can
be done either analytically or numerically.

3.4 The Nitty-Gritty

Generally, the control of the solution of the resulting
highly nonlinear matrix system (3-6) is a tricky matter.
Both the choice of the time step size Ar, and the itera-
tion control of the Newton scheme significantly influ-
ence the success and the efficiency of the simulation. In
the PCOSN scheme (Diersch & Perrochet, 1999) the
nonlinear matrix system is linearized by the predictor
solutions. Temporal truncation errors can be easily esti-
mated by evaluating predictor and corrector solutions
which are the basis of an adaptive, error-controlled
time stepping and iteration strategy. In contrast, the
TBFN (Forsyth ef al., 1995) does not consider tempo-
ral truncation errors in the time and iteration control.
The only criterion is the Newton convergence for a

possibly large time step size. The step size is deter-
mined from a desired change in the variable per time
step given by user-specified targets.

An important aspect of the iterative solution via the
PCOSN and TBFN schemes is the choice of an appro-
priate convergence criterion. Limiting the temporal dis-
cretization errors deviatory (change) error measures

d"+ IH L, are the controlling crlterla which are func-
tlons of the solution differences d" "' ~ AX] ot
+1
d L, <8 (3-9)

where & is a user-specified deviatory error tolerance.
Here, weighted RMS L, and maximum L error
norms can be chosen. Commonly, in the Newton
method the deviatory error criterion (3-9) represents a
standard test to terminate the iteration within the time
step. In the PCOSN the temporal truncation and the
Newton termination error measures are equivalently
used. As a result, only one error criterion and one New-
ton step per time step become necessary ('c =1).
+1HL ,
the residual HR': B 1” 1, may be directly controlled such
as

R <8, lF (3-10)

T

where an additional error tolerance &, appears and an
appropriate normalisation of the residual (here with
respect to the external supply F’ ! ) is required. In the
TBFN deviatory errors Hdzﬂ‘ 1 and residual errors
‘R”+ IH 1, can be alternatively er’;lployed. Instead of a
one- step Newton control so as done in the PCOSN the

predictor-corrector technique can also be extended to a

FEFLOW | 103



multiple step Newton (PCMSN) strategy satisfying
both criteria (3-9) and (3-10). To measure the global
balance error we introduce

T
[ IR0 e
w(T) = S (3-11)

[ 1F@, ar
t=0

for the ’accumulated loss’ of mass with respect to the
total external supply over the entire simulation period
0, 7).

3.5 Analytical Solution

In one dimension the Richards equation (3-1)

aas—\l(,(thfa%[Kr(w)K(%—\gf 1)} -0 (-12)

can be transformed into the linear advective-dispersive
equation of the form

o, K os __ K %
or e(l1-s5,)0z ea(l-s,)s,2

=0 (3-13)

for the exponential constitutive law (3-3) by using the
following assumptions: S, =y, = Q =y =0 and z
is oriented downward in the direction of gravity.

With s(z,0) = s, and 5(0, ) = s, the solution is
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. Kt
s —S. e(l—s
s(z, t) = si+( ) erfc 2 (3-14)
2 Kt
ea(l-s,)
z+ (th )
e(l-s
+ e™erfe| ———=
Kt
ga(l-s,)

It can be easily seen from (3-13) that with large oL the
problem is dominated by advection. Otherwise, consid-
ering a fully implicit time discretization the temporal
numerical dispersion can be estimated to

At 2
n+1 n K
Dnumdisp ~ 7[8(1 _ Sr):| (3-15)

3.6 Test Case

The problem is described in Fig. 3.1. For the lower
boundary a free drainage-type boundary condition is
applied (Diersch, 1998). The 6 m column is discretized
by 120 linear elements, so the nodal spacing becomes
Az =5 cm.

3.6.1 Newton control by the devia-
tory error criterion (3-9)

The computed saturation profiles for two a-parame-
ters in comparison with the analytical solution are



shown in Fig. 3.2. Large conservation errors are
observed for the TBFN if the number of time and
accordingly Newton steps become small. For
o =5m ' 20and 6] time steps (49 and 116 Newton
steps) are needed for the constraints Az, = 0.2 d and
At = 0.05d, respectively. It leads to the total inte-
gral balance errors (3-11) of R(3d)~160%
and ~40%, respectively. In contrast, the PCOSN took
240 variable time and Newton steps resulting an
acceptable balance error of only R(3 d) ~0.06% with a
very good agreement with the analytical solution. Sim-
ilar results appear for a = 200 m' , where the TBF
gives R(3 d) ~ 7% (74 time and 344 Newton steps) and
R(3 d)~2% (107 time and 301 Newton steps), respec-
tively, while the PCOSN obtains R(3 d) ~ 0.09% after
360 time and Newton steps.

— -~ 5, = 0.8
K=025 md '
=03

. s, = 0

© o =5.200m"
s, =107

SN | P oy _ 0

0z

Yz

Figure 3.1 Sketch of the test problem.

3.6.2 Newton control by the residual
error criterion (3-10)

As outlined in Fig. 3.3 the conservative problems
disappears for the TBFN if the residual error criterion
(3-10) is used with &, = 10*. The adaptive PCMSN
and the TBFN gives comparable results which agree
quite well with the analytical solution. Here, the
PCMSN is now controlled by two the criteria (3-9) and
(3-10): & = 10* for the time adaptation and
8, = 10 for the Newton termination, where more
than one Newton step per time increment can occur.
The TBFN needed 49 time (279 Newton) and 133 time
(502 Newton) steps for a = 5 m ' and o = 200 m ,
respectively, achieving total balance errors of
R(3 d) =~ 0.0006% and =~ 0.001%, respectively. Expect-
edly, the PCMSN took more time steps. We found 164
time (268 Newton) steps with R(3 d) ~0.01% and 165
time (362 Newton) with R(3d)=0.001% for
o =5m' ando =200m ', respectively.
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Figure 3.2 Saturation profilesatt=3 dfora) o = Sm andb) a = 200m , 8 = 10 * with the deviatory

error criterion (3-9) for the Newton control, aggressive target change parameters are used for the TBFN with a

maximum time step constraint Az .

3.7 Conclusions

For the TBFN the residual error criterion should be
preferred rather than standard deviatory tests to avoid
conservation errors as long as the target change param-
eters allow large steps. On the other hand, the adaptive
PCOSN scheme sufficiently controls the solution pro-
cess by limiting time truncation errors and an addi-
tional residual test, so as done in the PCMSN scheme,
is not necessary in the most cases.
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A shock-capturing finite-element technique for
unsaturated-saturated flow and transport prob-

lems
H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

ABSTRACT

A shock-capturing technique is introduced for a finite ele-
ment approach of the governing balance equations of flow,
contaminant mass and heat transport in variably saturated
porous media. It represents a nonlinear method which
depends itself on the numerical solution and is characterized
by an additional discontinuity-capturing term controlling the
derivatives in the direction of the solution gradient. The
technique is embedded in a predictor-corrector scheme of
first and second order in time to handle the solution implic-
itly. The impact of the shock-capturing technique is studied
for selected applications.

4.1 Introduction

In the numerical modeling of multidimensional trans-
port problems upwind techniques such as SUPG
(streamline-upwind  Petrov-Galerkin)!  or scalar
upstream weighting? are standard to stabilize the solu-
tions when convection becomes highly dominant.
While the classic artificial diffusion method often suf-
fers in a considerable smearing of steep fronts® the
SUPG formulation cannot preclude the presence of
overshoots and undershoots in the vicinity of sharp
gradients*. For nonlinear situations, e. g., buoyancy-
driven convection, such type of oscillations may affect

the global stability of the numerical results and the
solutions fail.

It has been shown* the streamline is not always the
appropriate upwind direction. A generalization of the
streamline concept in form of adding an additional dis-
continuity-capturing term was presented by Hughes
and Mallet®. The shock capturing (SC) method applied
to finite elements has been developed by Johnson et
al.% and Codina’. The SC technique appears as a non-
linear method, that is, the scheme depends itself on the
numerical solution. The main idea behind shock cap-
turing is to increase the amount of damping in the
neighborhood of layers. Then, the damping to be added
must be proportional to the element residual and must
be vanish in regions where the solution is smooth and
also where the convective term of the residual is small.

In this work the SC technique is applied to multidi-
mensional nonlinear transport processes arising in den-
sity-driven and unsaturated porous medium flows.
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4.2 Shock Capturing Tech-
nique

The basic idea is to employ an asymmetric weak
formulation

w = w+‘c1v~Vw+‘c2vH~Vw

(-1

where the first term is the standard Galerkin test func-
tion, the second term is the linear SUPG modification
and the third term is the nonlinear discontinuity-captur-
ing operator. The vector Y| is the projection of the
velocity vector v onto the direction of the local gradi-
ent Vy of a solution . Then, the parameters 7, and
7, are defined as

_ ah - ( ah ]
T 2 T, = max 0’2"’”’ T 4-2)
Y= L‘V‘%V‘V
IVl

where o is an upwind parameter? and / is the element
size. Considering, for simplicity, the transient convec-
tion-diffusion transport equation of the scalar quantity

]

YHY-Vy-V-(D-Vy)-0 =0 (4-3)

where D is the tensor of hydrodynamic dispersion and
O is a sink/source, and introducing the spatial residual

R(y) =v-Vy-V-(D-Vy)-0 (4-4)

the weak form of (4-3) by using the generalized test
function (4-1) introduces an isotropic shock capturing

dispersion coefficient in the form®’

[R(y)|

1
D ==
[Vyl

sc 2aLh

(4-5)

if |[Vy|#0 and zero otherwise. The upwind function
a, is given by

_ Il

V) = 2D, a=0.7

(4-6)

c

o, = max{O,afl/yH}

In principle, the shock capturing dispersion coefficient
D, could be added to the dispersion tensor both in the
longitudinal and transverse direction of the flow. How-
ever, a lower order time discretization can already
introduce a damping measure along the streamlines of
magnitude

- A

2
(= 5

D, v 47

and the final shock capturing is anisotropic and the dis-
persion tensor yields the form

D=~ fm%w (Brlvl + DI 4-8)

with the total longitudinal and transverse dispersivities,
respectively,

Ivl
(4-9)



where B,, B, are the true ‘physical’ dispersivities, D,
is the diffusion coefficient, and I is the unit tensor.
Notice, for a higher-order time discretization (e.g.,
Crank-Nicolson scheme) D,, is to be neglected.

The terms corresponding to the shock capturing dis-
persion (4-5) are nonlinear and an appropriate numeri-
cal treatment is required. SC techniques are often
employed with explicit time discretization. However,
due to the strong stability bounds of explicit
approaches for the solution of the present problems an
implicit version of the SC technique is preferred. It is
based on a predictor-corrector scheme which is imple-
mented for unsaturated-saturated flow, mass and heat
transport processes.

4.3 Implementation

The 2D and 3D finite-element discretization of the
coupled unsaturated-saturated flow, mass and heat
transport problems leads to the following matrix sys-
tem

O(S)h+MS+K(h,S)h = F(h,S,C,T)

Aq = B(h,S,C, T)
P(S,C)C+D(q,h,S,C, T)C = R(S, C)
US)T+L(q,h,S,C, T)T = W(S,T)

(4-10)

to solve the hydraulic head &, the fluid saturation S,
the Darcy fluxes ¢, the concentration C, and the tem-
perature T. A first order FE/BE (Forward Euler/Back-
ward Euler) and a second order AB/TR (Adams-Bash-

forth/Trapezoid Rule) predictor-corrector approach
with a one-step full Newton technique are applied?®.
Finally, the semi-implicit corrector step yields the fol-
lowing matrix form:

©0 ) &M} n+l_

+ +K|+

[Jh (Atn K G)Atn h

- [J‘ +®@—qh””+o(—‘9-h”+1<h”)—
NV At,

_M|:‘~P(Sn+1_sn)_KSﬂ:|+Fn+1
(4-11)
n+1 n+1

Aq =B

[JC+(S‘£+DHC”H = JCCZ+1

P(icn+Kcﬂ)+R)1+l
Atn At

n

7+ ()t = et
[7.+(8F +1)] :

P

U(K%I”’+Kiﬂ)+w”“

n

where ¢ is 2 for the TR and 1 for the BE scheme, K 1s
1 for the TR and 0 for the BE scheme, ® = ds/ dh|

is the derivation of the saturation with respect to the
hydraulic head and is a given function, n designates
the time level, subscript p indicates the explicit predic-
tor solutions obtained from FE or AB schemes®, and J'
represents the corresponding partial Jacobian of the
Newton method. The nonlinearities appearing in the
matrices and which are caused by both the physical
problem and the nonlinear shock-capturing parameter
(4-5) are linearized by using the predictor values. The
solution is automatically controlled by an error-based
timestep adaptation. Notice, as seen in (4-11) the unsat-
urated flow equations of the Richards type are treated
in a mixed saturated-head variable formulation pos-
sessing good conservative properties.

FEFLOW | 111



112 | White Papers - Vol. |

4.4 Numerical Results

4.41 Hoopes and Harlemann’s two
well problem

Hoopes and Harlemann® performed a number of
experiments using a sand model to measure the distri-
bution of a solute between recharging and discharging
wells in the saturated zone. Figure 4.1a shows the
coarse unstructured 2D mesh used to compare the
results at time ¢ = 0.2 d for the Galerkin method (Fig
4.1b), the SUPG scheme (Fig. 4.1c¢) and the proposed

/ a v )

TAVAVLT IR %s”i% .
éﬁm A‘a:"&"%‘ gg‘%'vm&
S TAAY S e
%gﬂm:?u%‘ai
Marivatioions

I APIRERKAIRRR

SC method (Fig. 4.1d). Following parameters have
been used: injection rate ¢ =6.433 m%d, D, =0, B, =
0.0015 m, B, = 0 (for more details see!?).

It reveals the Galerkin scheme produces significant
wiggles while the SUPG and the SC schemes give sta-
ble solutions. The SC results appear superior to the
SUPG distribution. The SC scheme introduces a
smaller amount of upwind and exhibits more accurate
results.

Figure 4.1 Comparison for Hoopes and Harlemann’s experiment: a) used mesh, b) Galer-
kin (no upwind), ¢c) SUPG, d) shock capturing.



4.4.2 Sinking of a heavy solute in a

‘sealed box’

a)
The advantage of the SC method becomes more
apparent if considering the following density-driven
problem (Fig 4.2).
a)
0.350 m b)
g
0325 m | Co =400 g/ gI
=
B
8 Cy=50 g/l
3 K =10*m/s o
e Dy=10° m%s
Br=Br=0m
o Im |
d)

Figure 4.2 a) domain, b) used mesh
(17,336 nodes; 33,198 triangles).

Figure 4.3 Computed solute distribution for
the SUPG (left column) and the SC scheme
(right column) at different times: a) 0.5 d, b)
1.5d,¢)2.5d, and d) 100 d.
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In a 2D box of a saturated porous medium with
impervious boundaries a heavy solute with a concen-
tration of 400 g/l is initially placed at an upper location.
The background concentration is 50 g/l and mechanical
dispersion should be neglected. It becomes clear that
the gravity-induced sinking process of the solute is dif-
ficult to model because the buoyancy forces are very
large. Otherwise, it is to be expected that discretization
effects becomes significant due to different damping
measures required in the numerical solution. An
unstructured mesh of a medium resolution is used for
comparing the SUPG and SC schemes. The results are
displayed in Fig. 4.3. As shown the evolving pattern
formations are quite different for both schemes. It
clearly reveals the overdiffusive property of the SUPG
scheme against the superior SC method. Notice, a
Galerkin approach cannot be successful for the used
mesh.

4.4.3
region

Infiltration into an initially dry

This unsaturated heterogeneous 2D problem was
introduced by Forsyth and Kropinski'! to study
upstream weighting methods. The problem is difficult
to solve due to both the initially dry condition (initial
capillary pressure head of -100 m) and the flat capillary
pressure curve (van Genuchten pore size distribution
index of 5). The flow problem'! and an accompanying
transport problem of an infiltrated tracer (with D, =
107 m?/s, B, =0.05m, B, =0.005 m) is simulated by
using the SC method on a coarse 90x21 quadrilateral
mesh, which is comparable to!!. The resulting distribu-
tions for the saturation and the solute at time ¢ = 30 d
are exhibited in Fig. 4.4. A comparison with Forsyth

and Kropinski’s saturation patterns indicates that the
present results possess a good adaptation of steep gra-
dients without spurious oscillations. Such a steepness
was achieved by Forsyth and Kropinski only at a finer
mesh. There, the agreement is quite well.

a) .

Figure 4.4 Simulated distributions of a) saturation
and b) solute for the Forsyth and Kropinski’s
problem'! at ¢ = 30 d by using the SC method for a
coarse 90x21 quadrilateral finite element mesh.



4.5 Conclusions

The nonlinear SC method have shown to be supe-
rior to a common SUPG scheme. It improves numerical
stability by introducing crosswind dispersion in the
neighborhood of layers. It is less overdiffusive and
does not require too much computational extra cost.
Embodied into a predictor-corrector technique the SC
method can be used in an implicit mode and is easy to
implement. This makes it an attractive technique for
practical usage. The SC method is available in the
FEFLOW code!®.
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Error norms used in FEFLOW

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

5.1 Errors and Measures

Mathematically, an error e can be considered as the
difference between an approximate y and an exact
solution v

e=vy-vy
e = V= Vi

(5-D

Note, y stands for a primary solution variable, which
is typically in FEFLOW the hydraulic head #, the con-
centration C or the temperature 7.

The specification of a local error in the form (5-1) is
generally not appropriate and more general error mea-
sures are required. For this reason various 'norms’ rep-
resenting some integral scalar quantity are often
introduced to measure errors. In an abstract sense the
vector (or Holder) norm, so-called Lp norm, is the most
general expression for an error measure, viz.,

1/p

N
lel, = | 3 le)” p=1 (5-2)
i=1

where N represents the number of vector elements. In
practical applications the error norm should be appro-
priately chosen to focus on the particular quantity of
interest. As the result, in varying p one can emphasize
the maximum differences occurred in the solution or
one has more interest in an average and integral mea-
sure of the error. While the former is a much stronger
measure and focus on local effects, the latter gives
often a representative measure of the overall error in
the entire solution space. Accordingly, FEFLOW uses
different norms in measuring errors which can be
optionally chosen.

5.2 Errors Derived for Numer-
ical Schemes

The used specific form of the error measure
depends on the numerical context. For instance, for a
simple iterative scheme applied at a given time level it
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has the form

T+1 T

e = |wi Vi

(5-3)

where t corresponds to the iteration counter. On the
other hand, in using the predictor-corrector techniques
with automatic time stepping the errors are derived for
the Forward Euler/Backward Euler (FE/BE) scheme as

1
e = 3jvi-w? (5-4)

and for the Adams-Bashforth/Trapezoid rule (AB/TR)
scheme as

(5-3)

where the superscript A indicates the predictor solu-
tion, the subscript » is the time level, and Az is the
time increment.

5.2.1 Euclidean L, integral Root

Mean Square (RMS) error norm

This is the default error norm to measure an integral
error quantity. It represents an error measure which is
natural to the solution approximation of the governing
balance equations in then sense of square-integrable
functions over the solution domain:

1/2

N
1 1
lel, = |5 == 2 lef (5-6)

max ; = |

where v, 1s the maximum quantity of the solution to
normalize the y, entities. The maximum v,  is pre-
ferred for the normalization instead of using a relative
quantity, e.g. v; , which would lead to too strong esti-
mates especially at starting times or if converging to
steady state.

5.2.2 Absolute L; integral error norm
This norm represents an average of the error in the
solution domain:

N

1
NV _Z e

i=

lel,, = (57)

It is an alternative to the L, RMS norm. Commonly, it
should not be the first choice (the RMS norm is often
more appropriate).

5.2.3 Maximum L_ error norm

This error measure can be useful if focusing on the
maximum error occurring in the solution. The maxi-
mum norm is defined as

max |ei|
max i

lell, = (5-8)



It is the strongest measure and should be preferred if
the local error is important in the numerical process
(5cheme listens to each sound’).

5.2.4 Normalization by using the
maximum quantity y_

The maximum quantity v, of the solution
v = y(x, t) is used to normalize the error measures (5-
6) to (5-8), where x is the space coordinate and ¢ is the
simulation time. Its value is determined internally by
FEFLOW at the beginning of each simulation run. In
practical simulations v, is no more changed during
the simulation time ¢ and during the iteration progress
7. Accordingly, v, .. is determined at initial time and
for an initial distribution of v :

0
Wmax = max y;(x, 0) (5-9)
1

fori =1,...,N.

The normalization in form of y,/y (i=1,...,N)
provides dimensionless measures in (5-6) to (5-8). The
input of user-specified error tolerances in FEFLOW is
correspondingly dimensionless. In determining the
maximum quantity v, at initial time via (5-9) the
user has to notify the following:

* v, is computed at beginning of a simulation run
which is based on the initial distribution of y and
boundary conditions at initial time of the problem,
and remains unchanged during the progressing

time and iteration. If the problem is not source-
free (e.g., the presence of a groundwater recharge,
a mass or heat supply) or the boundary conditions
are time-dependent, the actual maximum of the
solution can increase above the magnitude of
Woax during the time.

*If v, becomes a larger value (e.g., a hydraulic
head £ is referenced to a larger elevation) small
derivations in the solutions are scaled down as
normalized quantities. For instance a derivation of
I mm in the hydraulic head leads to different
dimensionless error measures if vy, . is different:
(5.001 -5)/30 = 3.333-10 ~, where v, = 30
m versus (5.001 —35)/3000 = 3.333-10 ° when
Voax = 3000 m. With other words, if a dimen-
sionless error tolerance amounts for instance to a
magnitude of 10 , the tolerated derivation in the
hydraulic head is then 3 mm for the case of
Voax = 30m and 30 cm for the case of
Vo = 3000 m

* To avoid a division by zero in the normalization,
Woax 1S automatically set to 100 if the maximum
quantity is detected zero.
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About the difference between the convective
form and the divergence form of the transport

equation

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

6.1 Basic Transport Equation

From conservation principles' we have the follow-
ing transport equation for a property

SRy +V-(q)-V-D-Vy) =0 in Q (6]

where

y = scalar transport quantity;
R = retardation;

q = velocity field;

D = dispersion tensor;

0O = sink/source;

This formulation is called divergence form. The equa-

tion (6-1) can be transformed (simplified) by incorpo-
rating the continuity equation'. It yields

2 .
Rda—\y+q-V\y7V-(D-Vw)=Qw in Q (6-2)

where

R,= 0(Ry)/0y derivative term of retardation;
0,=-vQ0,+0 an additional source term in which
0, is the source term in the continuity equation;

This is called the convective form, which is more com-
mon and usually applied in practical modeling. The
main difference lies in the convective terms. While Eq.
(6-1) has a divergence expression V - (qy) the trans-
port equation (6-2) involves a more convenient gradi-
ent relationship ¢ - Vy for the convective term. Both
transport equations are physically equivalent, but they
lead to different formulations of boundary conditions?
in their discretized forms as shown below.

6.2 Standard Boundary Con-
ditions

Let us denote the boundary of the domain Q by
0Q =T,®T, where I'; and I', are two disjoint por-
tions of the total boundary, 6Q . In the general case fol-
lowing formulations for boundary conditions (BC’s)
occur, Viz.,
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Vv =V,

on Fl}
(6-3)
-n-(D-Vy)ta(y,-y) =b

on I,

where on T'; we have Dirichlet BC and on T, it repre-
sents a more general form of a Robin type BC in which
more specific Neumann and Cauchy type BC’s as used
in FEFLOW! are involved. If « = 0 a Neumann BC of
2nd kind results, while for » = 0 a common Cauchy
BC of 3rd kind is given. In (6-3) r corresponds to the
normal unit vector (positive outward), vy, and v, are
prescribed boundary values of y on T'; and T,,
respectively.

6.3 Weak Form of the Convec-
tive Form (6-2)

The finite element formulation is based on the fol-
lowing weak form of the transport equation (6-2).
Introducing the spatial weighting function w we get

oy _
J‘W(Rd5+q - VW) = jw[v (DY) + 0,1 (6-4)
Q Q
We can invoke the following identity (partial integra-
tion) applied to the dispersive’ part

[V (D -Vy)] = [WIV-(D-Vy)] (6-5)
Q Q
+ IVW~(D V)
Q

and rewrite (6-4) as follows:

j[w(Rd%—“th : Vw) Vw-(D- w)} - (6-6)

Q
[V - - V)l + w0, }
Q

Now, applying the divergence theorem (Green’s theo-
rem) on the ’dispersive’ term on the RHS of (6-6)

[V-DvD-vy)l = [wn-(D-Vy) (6-7)
Q oQ
and obtain for (6-6)
(6-8)

I[W(Rd%{;Jrq'vW)JFVW'(D'VW)} =
Q

Iwa+ I wn - (D - Vvy)
Q o0

We can easily insert the Robin-type BC (6-3) into (6-7)
to get

[wn-(D-Vy) = [wlaly,—v)-b] (6-9)

80 r,

By inserting (6-9) into (6-8) the resulting weak form
for the finite element solutions is finally given by

J‘I:W(Rdaalt +q- V\y) +Vw-(D- V\y):| + J.de = (6-10)
Q I,

.[ w(ay, —b)
r,

Jroy+
Q



It should be noticed that with this BC formulation the
normal ’dispersive’ flux is expressed. For instance, if
a=>b =0, known as the natural (Neumann) condi-
tion, then the boundary is impervious for the dispersive
flux n-(D-Vy) = 0, what does not mean that the
boundary is impervious for the normal ’convective’
flux n - gy on the boundary. But we shall see next that
this becomes possible in using the divergence form.

6.4 Weak Form of the Diver-
gence Form (6-1)

The weak formulation for the transport equation
(6-1) yields

[W[REE V(v = [wV-@-Vw)+0] (@11
Q Q

Now we see there is one important difference to the
above convective form (6-4). Beside the ’dispersive’
term we have also to integrate the ’convective’ term by
parts, viz.,

[wv-(qw) = [V-COrqu)—[vg-Vw  (6-12)
Q Q Q

Using the divergence theorem we obtain

[V-vaw) = [wyn-q (6-13)
Q oQ

where a new boundary integral term appears.

Applying this formulation together with the remain-
ing terms (analogous to above) we obtain the following
weak form

I[WRd%{—Wq~VW+VW-(D~V\V)} = (6-14)
Q

IWQ+ fwn-(DV\v—q\v)
Q oQ

There is a difference between (6-14) and (6-8) regard-
ing the boundary term for 6Q. Would we express the
normal convective boundary flux as

J wyn-q = wan -q (6-15)
o0 r,

and using the Robin BC type (6-3) the weak form of
the divergence form (6-14) takes the expression

I[wRdaa—“;—quVw+Vw-(D~V\y):|+J.w(a+n~q)w
e T (6-16)
= IwQ+ J.w(a\uz—b)

Q T,

The normal convective flux appears now on the LHS of
(6-16) and is equivalent to the following BC’s

Y=y, on I
(6-17)
-n-(D-Vy—qy)ta(y,-y) =b on I,

rather than (6-3). In applyimg now (6-17) to the diver-
gence form (6-14) the following weak statement results
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J[wRd%—\y+Vw~(D~Vw7wq)}+ Iwaw
Q r,

= J.WQJF jw(awz—b)

Q T,

(6-18)

which is different to the convective weak form (6-10).
For instance, if « = b = 0 the corresponding natural
(Neumann) condition forces the total boundary flux
(’dispersive’ plus ’convective’) to be zero. A nonzero
value means that both the dispersive and the convective
normal flux should be known (or estimable) on T', . As
long as n-q is known there it can be handled as a
given ’reaction’ term in the LHS of (6-16). But nor-
mally, if not, for instance along some outflowing
boundary portions, this value cannot be predefined a
priori as a boundary condition and becomes automati-
cally dropped with the consequence that the boundary
becomes convectively impervious.

6.5 Advantages vs. Disadvan-
tages

The (default) convective
together with the BC’s

formulation (6-10)

Y=y, on I

} (6-19)
-n-(D-Vy)ta(y,-y) =b

on I,

is easy to handle. All BC’s need not specific consider-
ations. Along boundaries the Neumann type
-n-(D-Vy) =b or the Cauchy type
—n-(D-Vy) = —a(y,—y) are appropriate for a wide

range of applications. A disadvantage of the convective
form can arise if the prescription of the ’dispersive’
boundary flux is insufficient, e.g., for an intruding con-
taminant source on a boundary portion with a given
rate.

The (optional) divergence form (6-16) is able to
conserve the total (convective’ plus ’dispersive’)
boundary flux on boundaries:

v =y, on I
(6-20)

—n-(D-Vy-—qy)ta(y,-y) =>b on I,
Here, the Neumann type condition is

-n-(D-Vy-qy) = b, while a Cauchy type BC takes
the form -n-(D-Vy-gqy) = —-a(y,—vy). This is
sometimes advantageous because the total flux BC is
satisfied® instead of satisfying only the ’dispersive’
flux. However, on outflowing boundaries n - ¢ is often
unknown and such a BC type requires a specific han-
dling as described in the following section.

As the sum, the convective form is much easier to
handle and sufficient for the most applications, while
the divergence form represents a totally conserved for-
mulation, however, it needs specific techniques and
additional effort for boundary conditions at outflowing
portions.

6.6 Handling of Outflowing
Boundaries for the Diver-
gence Form

At an outflowing boundary the Robin-type bound-



ary condition

—n-(D-Vy—qy)taly,—-y) =b on I, (6-21)

cannot be specified a priori because n- q\y|r
unknown. However, this part can be computed from the
flow equation via a postprocessing balance analysis in
the following form:

The flow equation

S0%7V~(K~Vh) =0, in Q (6-22)

where # is the hydraulic head, S, is the storage coeffi-
cient and K corresponds to the tensor of hydraulic con-
ductivity, leads to the following weak formulation

jwsoat+jvw (K- Vh)——jwn q+ij (6-23)
Q oQ Q

With the given solution of # Eq. (6-23) can be explic-
itly evaluated at T', according to

jwn q = wa ij (K-Vh)— jws (6-24)
I,

via a consistent boundary quantity method* to give the
unknown boundary flux n-g¢|. . Here, the boundary
quantity » - ¢ is obtained from f6 24) by summing up
all nodal contributions at the corresponding boundary
portion over all adjacent finite elements e

Jn~q=2jwn-q (6-25)
r, el-;

As soon n-gq becomes known at T', the Robin-type
boundary condition (6-21) can be replaced by such a

type (6-19)

-n-(D-Vy)+ta(y,-y) =b on r, (6-26)

which is also used for the convective form of the trans-
port equation. With other words, at outflowing bound-
aries the divergence form turns on a ’diffusive’
Neumann-type boundary condition (6-26), e.g.,
-n-(D-Vy) = b insteadof ~n-(D-Vy—qy) = b.

Finally, at outflowing boundaries the weak form of
the transport equation (6-16) is now used as

J.[wRdal—\uq-VerVw-(D-V\y)}
Q

ot
ik given from Eq. (24)
=JwQ+Iw[a\u2 b

according to Eq. (25)

with n - ¢ as a given ’reaction term’ computed from (6-
24) and (6-25), and b as a ’diffusive-type’ boundary
condition based on the formulation of Eq. (6-26). In
this way, the divergence form (6-14) becomes applica-
ble for all practically important boundary conditions:
While at inflowing boundaries a total mass flux condi-
tion can be preferable, at outflowing boundaries only
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the diffusive/dispersive outgoing needs to be specified,
where n- (D - Vy) = 0 appears as a natural boundary
condition for outflowing situations.

6.7 An Example

Considering the 2D vertical flow domain as shown
in Fig. 6.1 describing the contaminant influence on a
discharging aquifer from a leaked deposit, the differ-
ences between the convective and the divergence form
of the transport equations become apparent. The cross-
sectional domain has a length of 1000 m and a height
of 40 m. The aquifer is discharged from left to right.
The deposit contacts the aquifer on top over a length of
50 m, where contaminant matter releases. All parame-
ters and relationships are displayed in Fig. 6.1.

The boundary conditions for the flow problem are
summarized in Tab. 6.1. Accordingly, the discharge
amounts to a total flow  balance of
0.1-40+0.0125-50 = 4.625 m3/d/m, which releases
through the boundary D-E.



250 m 50 m

A
£
=
v
F 1000 m E

Figure 6.1 Cross-sectional domain of study (X - isotropic hydraulic conductivity, & - porosity, D, - molecular diffu-
sion, B, - longitudinal dispersivity, B, - transverse dispersivity).

Table 6.1 Flow boundary conditions

Section Type Value Unit Comment
A-B - - - unspecified (impervious)
B-C Neumann n-q =-0.0125 m/d influx
C-D - - - unspecified (impervious)
D-E Dirichlet h=40 m pervious boundary (outflux)
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Table 6.1 Flow boundary conditions

Section Type Value Unit Comment
E-F - - - unspecified (impervious)
A-F Neumann n-q =-0.1 m/d influx

The boundary conditions for the contaminant mass dition n-(D-Vy) for the convective form according
transport differ between the convective and the diver- to Eq. (6-19) and a total (dispersive plus convective)
gence forms as summarized in Tabs. 6.2 and 6.3. The rate n- (D Vy—gqy) for the divergence form accord-
contaminant release from the deposit is modeled by a ing to Eq. (6-20).

given rate. This rate represents a dispersive influx con-

Table 6.2 Boundary conditions for the convective form according to Eq. (6-19)

Section Type Value Unit Comment

A-B - - - unspecified
(impervious for dispersive fluxes
—n-(D-Vy) =0)

B-C Neumann -n-(D-Vy) = -0.0125 g/m?/d predefined (dispersive) influx of con-
(a=0) taminant
C-D - - - unspecified

(impervious for dispersive fluxes
—n-(D-Vy) =0)

D-E - - - unspecified
(impervious for dispersive fluxes
—n-(D-Vy) =0, however, the

boundary is convectively pervious,

compare Tab. 6.1)

E-F - - - unspecified
(impervious for dispersive fluxes
—n-(D-Vy) =0)

A-F Dirichlet y =y, =0 g/m’ predefined concentration (entering
freshwater)




Table 6.3 Boundary conditions for the divergence form according to Eq. (6-20)

Section Type Value

Unit Comment

A-B - -

- unspecified
(impervious for total fluxes

-n-(D-Vy—qy) =0)

B-C Neumann
(a=0)

—n-(D-Vy—qy) = -0.0125 g/m?/d

predefined (total) influx of contami-
nant

C-D - .

- unspecified
(impervious for total fluxes

-n-(D-Vy-qy) =0)

- unspecified, however,
specific handling as outflowing
boundary in setting —n - (D - Vy) =
0 as an impervious condition for dis-
persive fluxes

- unspecified
(impervious for total fluxes

-n-(D-Vy-qy) =0)

A-F Dirichlet

3

g/m predefined concentration (entering

freshwater)

The computed stationary contaminant plume for the
convective form is exhibited in Fig. 6.2. The counter-
part of the divergence form is shown in Fig. 6.3. Quali-
tatively, both plumes have similar characteristics, but in
their quantity the patterns are fairly depart of each
other.

In the convective form the Neumann condition for
the contaminant release at the deposit is mimicked by a

dispersive flux n - (D - Vy) with a magnitude of 0.0125
g/mz/d. Notice, for this formulation the convective
influx at this boundary portion is not defined. To real-
ize this given rate via a dispersive mechanism (i.e.,
driven by a concentration gradient Vy and controlled
by the dispersion D) the concentration gradient results
automatically, where a certain concentration magnitude
appears at the deposit border section. In the present
case, the concentration increases to a maximum of
about 7.17 g/m3. In a budget analysis for the convec-
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tive form a total amount of 3.45 g/m/d contaminant
mass flux appears. What is the reason for this enlarged
contaminant mass flux? In the convective form only
the dispersive part is defined at the boundary while the
convective part remains undefined. Expectedly, the dis-
persive magnitude is exactly 0.625 g/m/d. With the
given dispersivity parameters (Fig. 6.1) concentration
profiles along the deposit boundary result as shown in
Fig. 6.4. This concentrations multiplied with the flow
rate of 0.0125 m/d (Tab. 6.1) must be additionally con-
vected through the boundary. Because the concentra-
tions are relatively high the convective part must be
large. Notice, it should become clear that this convec-
tive form must fail for the given boundary conditions if
the dispersivity (and diffusion) becomes smaller and
smaller. Then, the concentration gradient tends to an

infinitely large value with the result that the convective
part of the boundary flux becomes infinitely large.

Unlike this, the divergence form echoes exactly the
distribution and balance quantities which should be
practically expected. The budget analysis results a total
contaminant release of 0.625 g/m/d through the deposit
boundary. Consequently, the concentration magnitudes
are significantly smaller (maximum value is only about
1 g/m> at the deposit boundary) as shown in Fig. 6.4.
This means the net contaminant mass release for the
divergence form is about six times smaller than for the
convective form, which is also indicated by the depart-
ing concentration profiles of this order (Fig. 6.4).

Figure 6.2 Computed stationary contaminant distribution for the convective form (exaggeration 10 : 1).



Figure 6.3 Computed stationary contaminant distribution for the divergence form (exaggeration 10 : 1).

The differences between the convective and the diver-
gence forms result from the different meaning of
boundary conditions for fluxes (Neumann-type or
Cauchy-type boundary conditions) of contaminants. It
should be obvious that no differences appear if the con-
taminant source is modeled by a Dirichlet-type bound-
ary condition where the concentration is fixed. It is to
be noted that the same relationships have to be consid-
ered for heat transport phenomena.

v [gm’] 4 - -

convective form
2 divergence form -

0 s 1 L | L | s 1 L
0 10 20 30 40 50

Deposit length [m]

Figure 6.4 Concentration profiles computed along the
deposit boundary in dependence on the convective
and divergence form.
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6.8 Remarks on the Equiva-
lence of Cauchy-type and
Neumann-type Boundary
Conditions for the Con-
vective Form and the
Divergence Form of Trans-
port Equations - Prescrip-
tion of Input Mass Fluxes

For the divergence form of transport equation the
Neumann-type B.C. can be written as

g.=-n-(D-VC—qC)=—f on T, (628

where

C = concentration;

g = normal mass flux, directed positive outward;
¢ = Darcy velocity;

D = dispersion tensor;

f = prescribed Neumann mass flux rate;

Note that the prescribed Neumann mass flux rate f is
chosen negative because the mass flux is considered as
an input rate.

On the other hand, the standard convective form of
transport equation can be subjected to the following
Cauchy-type boundary condition
g,=-n-(D-VC) = -®(Cx-C)  on

Ty (6-29)

where

C§ =reference concentration;
@ = mass transfer rate;

If we simply choose

O =-n-gq (convective boundary flux)

6-30
cy = [/ (30

then formulation (6-29) becomes equivalent to (6-28).
This can be easily seen if inserting (6-30) into (6-29):

“n-(D-VC)-®C = -DCh
-n-(D-VC)+n-(qC) = -

(6-31)

Let us consider the following example to illustrate
the equivalent B.C. in both forms. We assume that an
input mass flux rate for a leaky deposit should be mod-
eled. Regarding the flow condition the boundary is
occupied with a constant input flow rate —-g¢ = n-¢q.
For the divergence form Fig. 6.5 shows the correspond-
ing boundary conditions for flow and mass transport.

flow transport

Neumann-type

qE:f

Neumann—type
q9=-g

R e

Figure 6.5 Boundary conditions applied to the diver-
gence form of transport equation.




In contrast in using the standard convective form of
transport equations the boundary conditions as dis-
played in Fig. 6.6 would lead to the same results.

flow transport
Neumann-type Cauchy-type
ngq=-g o=g C=po

RIRTRLRY)

SN

Figure 6.6 Boundary conditions applied to the con-
vective form of transport equation.

The practical consequence is that input mass flux
boundary conditions can also easily simulated by using
the standard convective form without resorting to the
more complex divergence form of transport equation.

References

1. Diersch, H.-J. G,, FEFLOW - Physical basis of modeling. Refer-
ence Manual - Part I, WASY Ltd., Berlin, 2002.

2. Pinder, G. & Gray, W., Finite element simulation in surface and
subsurface hydrology. Academic Press, 1977.

3. Galeati, G. & Gambolatti, G, On the boundary conditions and
point sources in the finite element integration of the transport
equation, Water Resources Research 25 (1989) 5, 847-856.

4. Gresho, P. M., Lee, P. L. & Sani, R. L., The consistent method for
computing derived boundary quantities when the Galerkin FEM
is used to solve thermal and/or fluids problems, Numerical Meth-
ods in Thermal Problems, Vol. 2, Pineridge Press, 1981, 663-675.

FEFLOW | 133



134 | White Papers - Vol. |



About the formulation of hydraulic head bound-
ary (potential) conditions for fluid density-

dependent groundwater problems

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

7.1 Problem Description

In formulating boundary conditions (B.C.) for the
groundwater flow the prescription of a hydraulic head
(1st kind Dirichlet-type or 3rd kind Cauchy) B.C. at a
given boundary portion is a common task. However, in
modeling density-dependent problems such as saltwa-
ter intrusion or geothermal processes these hydraulic
head B.C.’s have to consider the specific definition of

Y

the hydraulic head (potential)!. A typical example is
the saltwater intrusion from a sea into a coastal aquifer
as schematized in Fig. 7.1. While on the land side of
the aquifer a freshwater discharge can be prescribed
(e.g., by a 2nd kind Neumann flux-type B.C.), at the
sea side the boundary is formed by a given hydraulic
head distribution. This hydraulic potential is measured
in form of the piezometric head at the sea which is
related to the actual fluid density of saltwater p, .

freshwater p,

LYYV IVYVVININYY

saltwater p

z z'
S

s€a

~ B

P = —p,8z h = flz, py)

Figure 7.1 Saltwater intrusion in a coastal aquifer with related boundary conditions
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7.2 The Reference Hydraulic
Potential

For the groundwater flow equations' FEFLOW pre-
fers the hydraulic head h , instead of the pressure p, as
the primary variable. As a consequence, the corre-
sponding B.C.’s of 1st kind (Dirichlet-type) or 3rd kind
(Cauchy-type), respectively,

h R

h

R at r
~O(hy —h)

(7-1)

)

9n

have to be expressed according to the definition of the
hydraulic potential /. As described in' the hydraulic
head variable # must be appropriately related to a ref-
erence fluid density p, , viz.,

(7-2)

Commonly, for saltwater intrusion problems the refer-
ence density p, refers to the freshwater.

7.3 Reference Potential from
Measured Heads

A measurement of a piezometric head is normally

related to the actual density of the groundwater. It can
be expressed by

(7-3)

where p_ is the density of groundwater at a known
salinity C: p, = p,(C). It should be clear that the head
h, cannot be directly used as a boundary condition.
Instead, it has to be transformed to the reference
hydraulic head %, Eq. (7-2). This can be simply done
under considering the following relationships:

Expanding Eq. (7-3) by p,

_pPo 7.4
T PogPs 7
we get if introducing Eq. (7-2)
P, P,
h, = =2h+(1-=2)z 7-5
o= g (13 (7-5)
and finally
b= 2o, (BPe) (7-6)

Po Po

Now, introducing the density difference ratio o as'

Ps— Py
=2 7-7
o (7-7)
Eq. (7-6) can also be written in the form
h=(1+a)h,—oz (7-8)

Equations (7-6) or (7-8) have to be used to calculate the
hydraulic head # from piezometric heads &, which
have been measured at a known saltwater density p,
(at known salinity C).



7.4 Hydrostatic Condition

Let us consider the pressure distribution in the vertical
z -direction of gravity g under hydrostatic conditions.
We assume that the density p = p(z) is varying lin-
early in the depth as shown in Fig 7.2:

(p; *Pz)z
Az

zZ
P1 1
*g

p=pt (7-9)

A

density p pressure

P2 )
Figure 7.2 Hydrostatic condition in a depth of Az under
a linear density gradient.

The fluid is hydrostatic for the vertical problem if

p _ _
dz pg

z (7-10)
p = p(z) = —g[p(6)d0

2

which yields with (7-9)

P Pzzz) (7-11)

R U
The hydraulic head % (7-2) related to the reference
density p, is then

h=h, 7(91 _90)27L(Pl —Pz)zz
Po 2Az\ py,

At boundaries where hydrostatic conditions can be
imposed two cases are commonly of interest: (1) a con-
stant saltwater density in the depth and (2) a linear
increase of density as typical in a transition zone. Both
cases are illustrated in Fig. 7.3.

(7-12)

case 1 case 2

z (constant) (linear)
Ps Po
| ‘ g

density p density p

Ps Ps
Figure 7.3 Two interesting density profiles for a
hydrostatic boundary condition.
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From (7-12) we obtain with p, = p, = p, for the case
of a constant saltwater density (case 1)

h=h—az (7-13)

For the case 2 with p, = p,, p, = p, we get from (7-
12) for a linear saltwater density (case 2)

2

h = hy+zoz (7-14)

The hydraulic head at the depth z = -Az is then
h=h,+aAz for the constant density and
o . . . .

h ha+§AZ for the linear density relationship.

7.5 Examples

7.5.1 Boundary with constant density

Referring to the saltwater intrusion problem of Fig.
7.1 we assume that water table of the sea is given by
h, = 0, that means we choose z = 0 at the free surface
of the sea where we have p = 0. We aim at finding a
corresponding hydraulic head condition for # which
should be imposed on the sea side of the model domain
AB (cf. Fig. 7.1). Let us assume we have a density of
the seawater of p = 1.029 kg/l. The freshwater has
p, = 1 kg/l, accordingly one gets o = 0.029 . The thick-
ness of the aquifer should be 20 m (0 <z<-20m).

Applying Eq. (7-8) orﬁ(7—13) we find along the ver-
tical boundary portion AB the following distribution
for the hydraulic head # (note that z = z'—#_):

h| = —oz = —0.029z
AB

(7-15)

Accordingly, at the point A (top of the aquifer, Fig. 7.1)
we have to set # = 0 and at the point B (bottom of the
aquifer) we must set # = 0.58 m. Between these nodes
the distribution of / is linear so as seen by Eq. (7-15).

REMARK 1: The assignment of the hydraulic head 4
has to be consistent with the definition of the z-coordi-
nate in the direction of gravity according to Eq. (7-8).
In contrast to the above example if we would define
z = 0 at the aquifer bottom (at point B in Fig. 7.1), A
has to be chosen as 20 m and Eq. (7-8) results
h| _ = 20.58 —0.029z [m], which represents an equiva-
ledfprescription of the hydraulic head B.C.’s.

REMARK 2: Similar considerations are required for
thermal (thermohaline) problems if a hydraulic head
condition is to be prescribed at a boundary where the
temperature 7 (and salinity C) are input. In this case
the density p, is deemed to be the value for the mea-
sured T (and C): p, = p(T, C). For instance, using a
linear thermal expansion of the density' we have for a
thermohaline situation (both 7 and C are given here)
the following relationship

P Po_ y_p(r,-T,) (7-16)
and Eq. (7-6) yields
h=[1+o-B(T-T)lh;—[a-B(I,-T,)]z (7-17)

in which T, is the temperature to be prescribed at the



boundary I' - , T, is the reference temperature related
to the referéfice density p,, and B is a known linear
thermal expansion coefficient. (Notice, for purely ther-
mal problems o = 0 in Eq. (7-17)). To demonstrate
this relationship let us expand the above saltwater
intrusion example (Fig. 7.1). We assume the sea water
has a temperature of 20°C while the freshwater is 6°C
cold. The B -coefficient is 10t k! , o is again 0.029.
Accordingly, the input hydraulic head # at the bound-
ary portion AB varies as

— transition
2 zone _—

B = =BT, T,)) = ~002762 (7-18)
AB

7.5.2 Boundary with variable density

Sometimes it is necessary to impose a transition
zone at a boundary for a saltwater intrusion process.
Such an example is shown in Fig. 7.4, where the den-
sity varies linearly through the transition zone with a
thickness of Az, .

Py h,

density p head &

Figure 7.4 Boundary with a predefined saltwater-freshwater transition zone.

At such a boundary a hydraulic head condition
h = h(z) has to be imposed. From Egs. (7-14) and
(7-13) we obtain the following sample values for the
head profile as indicated in Fig. 7.4:

o
hl = h0+ EAZI
(7-19)

Az,
hy = hy+oa(Az,—Az)) = h0+a(Azsz
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where 4, represents the hydraulic head at the boundary ) = transfer coefficient, (T') ;
which is related to the freshwater density p,, .
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(ML”);

g = gravitational acceleration, (LT 72) ;

h = hydraulic head referenced to p,,
(L);

h = measured saltwater piezometric
head related to p,, (L);

ho, hy, hy = heads at locations, (L) ;

hR, h§ = piezometric head prescribed at
boundaries of Dirichlet- and
Cauchy-type, respectively, (L) ;

P = pressure, (MLiI T 72) ;

q, = normal boundary flux, (LT ! )

T = temperature, (®);

r,7, = boundary temperature and reference
temperature, respectively, (®);

z = elevation; Cartesian coordinate
along acting of gravity, (L) ;

z = Z'~hg, vertical Cartesian
coordinate with the origin at the top
of the saline water body, (L) ;

o = density difference ratio, (1) ;

B = linear thermal expansion coefficient,
©"):

Az = depth, (L);

r = boundary portion;

[ = reference fluid c_ig:nsity; density of
freshwater, (ML 7);

Py = density of saltwater, (ML73) ;

140 | White Papers - Vol. |



An efficient method for computing groundwater

residence times

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

8.1 Introduction

The computation of residence (travel) times of dis-
solved solutes in the groundwater body or the determi-
nation of the groundwater age is traditionally
performed by particle tracking methods>® based on
the advective pore velocity distributions. Unfortu-
nately, such type of technique provides only point-
related information about the groundwater age in form
of isochrones and, furthermore, neglects effects of
hydrodynamic dispersion. A certain expedient can pro-
vide random work techniques®. However, they are
again point-related approaches and are often time-con-
suming, especially for 3D applications, since a large
number of particles are needed to obtain representative
results for practical requirements.

Recently Goode® has proposed an interesting alter-
native in contrast to the above traditional approaches.
Its method is capable of computing the groundwater
age in a direct manner (practically in one step) at any
points of the model domain. Additionally, it includes
effects of the advection, diffusion and dispersion pro-
cesses. Goode’s method can be immediately performed

by FEFLOW? provided the basic variables, parameters
and boundary conditions are appropriately chosen.
Goode’s direct simulation strategy has taken over by
Perrochet” and was successfully applied to practical
tasks by using FEFLOW. In the following the direct
age simulation strategy will be described in some
detail, which can be adapted by each FEFLOW user.
The main advantages of this approach can be summa-
rized as follows:

« It can be performed by FEFLOW in utilizing the
embodied modeling features.

* Both 2D and 3D problems are easily applicable.

* The method is effective and can be simply han-
dled.

« It also includes effects of mechanical dispersion
and diffusion.

« It can also be applied to transient flow conditions.

8.2 Transport Equation of the
Groundwater Age

For a steady-state flow field the mean residence
time ("age’) 4 [d] can be determined from the concen-
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tration C [mg/l] of a tracer injected as an impulse at
time zero®. Accordingly, at any point in the model
domain the age 4 of the groundwater is considered as a
concentration-weighted travel time, viz.,

) J’O tCdt

A (8-1)

Jo Cdt

where ¢ is the time and C corresponds to the concen-
tration of the tracer. The dissolved concentration of the
tracer have to satisfy the law of mass conservation
written in form of the advection-dispersion transport
equation:

e%—f+q-vc=v-(D.VC) (8-2)

where ¢ is the porosity, ¢ is the Darcy velocity vector
and D represents the tensor of the hydrodynamic dis-
persion which includes effects of molecular diffusion
D,, longitudinal and transverse dispersivities B, , B,
respectively. Multiplying Eq. (8-2) by time, integrating
through all times, applying partial integration and
inserting the definition (8-1), one finally obtains a
transport equation of the following type
q-VA-V-(D-VA) = ¢ (8-3)

Equation (8-3) represents a steady-state transport
equation in which the mean age 4 is the primary vari-
able and the porosity ¢ appears as an ’age source’ term
of unit strength on the right-hand side. (It should be
noted for a depth-integrated horizontal 2D transport

equation the age source is Be, where B corresponds to
the thickness of the aquifer.)

To solve Eq. (8-3) for the age 4 under a given
steady groundwater flow field ¢ appropriate boundary
conditions of Ist kind (Dirichlet-type) and 2nd kind
(Neumann-type) along inflowing and outflowing
boundary sections have to be prescribed in the follow-
ing manner: At inflowing boundaries the groundwater
age A can be usually imposed as a 1st kind boundary
condition, for instance, if setting 4 = 0 the age (as a
relative time) is considered as the beginning time on
such a boundary section. On the other hand, along out-
flowing boundaries a natural 2nd kind Neumann condi-
tion can often be specified as n- (D -V4) = 0, i.e., the
age in normal direction »n to the boundary does not
change anymore (for instance typically if groundwater
leaves the aquifer and enters surface water).

8.3 Working Steps in FEFLOW

The solution of the age transport equation (8-3) in
2D and 3D can be simply performed by FEFLOW. One
utilizes the implemented transport equations which are
basically available in terms of either the contaminant
mass C or the temperature 7 variables. Instead, the
solution of the mass (or heat) transport equation is
mimicked for the age 4. The following working steps
are now useful:

(1) Specification of a steady-state flow problem in a
common manner.

(2) Extension of the problem class to a transport prob-
lem. We recommend a mass transport problem under



steady-state conditions (i.e., steady flow - steady mass
transport).

(3) Formulation of boundary conditions for the age 4,
eg, A=0 at inflowing boundaries and
n-(D-VA) = 0 at outflowing boundaries.

(4) Specification of the material conditions, where
properly the source term of zero order (’sink/source’) is
to be set as the age source in form of ¢ (or Be). (Note,
FEFLOW’s problem editor provides copy functions
which benefits the assignment of the age source from
porosity data).

(5) Solution of the steady flow and the age transport
equations in one step. The evaluation of the results can
be done by the standard tools available in FEFLOW for
the concentration, e.g., isoline plotting, 3D visualiza-
tion, data exporting etc.

There is also a trick” if the age computation is
required parallel to another transport equation so as
needed for density-driven processes. In this case the
problem is classified as a thermohaline problem in
which flow, mass and heat transport are simultaneously
simulated. Either the mass or the heat transport equa-
tion can then be used as the age transport equation.
This allows an new approach to the analysis of resi-
dence times for complex flow situations which were
impossible to date.

8.4 Demonstrative Example

Let us consider two aquifers which are separated by
an aquitard. The ratio of the hydraulic conductivities of

the aquitard to the both aquifers is amounted to 1 :
1000. Furthermore, we assume a disturbance in the
aquitard in form of local ’hydrogeologic window’,
through which the lower aquifer can be threatened. The
hydrogeologic window should have the same conduc-
tivity than the aquifer. On top of the upper aquifer
groundwater recharge is input. The following questions
arise: At which travel times do surface-entering con-
taminants arrive the groundwater at different depths?
How is the influence of mechanical dispersion and dif-
fusion? What are the differences between a 2D and 3D
modeling of the hydrogeologic window in the aqui-
tard?

We start with a 2D modeling. Figure 8.1 displays
the cross-section of a 2D vertical model, where the
depicted steady-state pathlines and isochrones are
obtained by the traditional particle tracking approach
available in FEFLOW too.
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Figure 8.1 2D (exaggerated) cross-sectional domain with pathlines and isochrones at 10, 20, 30, 40 and 50
years simulated by FEFLOW’s traditional particle tracking approach.

Now, the computation of the same problem via the
direct simulation of the groundwater age results a dis-
tribution of ages A4 for 10, 20,. 30, 40 and 50 years in
an isoline plot as shown in Fig. 8.2. Along the upper
boundary on which groundwater recharge is entering,
the age 4 is set to zero. A comparison of the results
(Fig. 8.2) with the particle tracking analysis (Fig. 8.1)
reveals a close agreement. Both simulations are per-
formed on the same mesh. The comparison between the
traditional particle tracking and Goode’s direct age
simulation requires negligible dispersion. Accordingly,
the results of Fig. 8.2 have been achieved by suppress-
ing the dispersivities (B, = B, = 0). To stabilize the
solution for the direct age simulation a streamline-
upwind method was used.

The effect of the hydrodynamic dispersion can be
seen in Fig. 8.3 for the depicted age distribution. Com-

pared to the case without dispersion (Fig. 8.2) two
main differences appears which can be of certain
importance for practical applications: (1) If dispersion
is considered the age is reduced in locations which are
mainly advectively affected as can be seen in the flow
region directly below the hydrogeologic window. It
means a longer travel time is required before a recharge
influence starting from the surface travels to a point in
the lower aquifer. This is caused by the dispersion,
where flow particles have to go a longer pathway
within the void space. However, a contrary effect can
be observed at the aquifer-aquitard contact zone. (2)
The age increases at the occurrence of hydrodynamic
dispersion (including diffusion) in impermeable or
low-permeable parts. This reveals physicochemical
effects on the travel times of the groundwater below the
aquitard which cannot be studied by common particle
tracking methods.



Figure 8.2 Computed ages for 10, 20, 30, 40 and 50 years by the direct simulation of groundwater age (exag-
gerated cross-section), without mechanical dispersion ; = B, = 0.

T00.0

Figure 8.3 Computed ages for 10, 20, 30, 40 and 50 years by the direct simulation of groundwater age (exag-

gerated cross-section), with mechanical dispersion.
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The use of Goode’s direct age simulation is simply
possible in the same way for 3D application, which will
be shown next along the above two-aquifer-aquitard
problem. Now we assume that the hydrogeologic win-
dow in the aquifer has a three-dimensional extent. If we
use the traditional particle tracking method also avail-
able for 3D in FEFLOW we can find pathlines and iso-
chrone patterns so as displayed in Fig. 8.4. Since each
particle tracking event is always related to single start-
ing point one needs many points, especially in 3D, to
get a possibly closed representation and to record
(hopefully) all critical locations. For complex applica-
tions this leads immediately to a ’chaos’ of lines and
markers in the 3D space. In contrast to that, the pro-
posed direct age simulation does not suffer in such dif-
ficulties. Here, the groundwater age represents a scalar
quantity computed at each node of a mesh. It can be
evaluated by using the available postprocessing tools,
for instance, isolines or fringes in slices, through arbi-
trary cross-sections and 3D displays so as exemplified
in Fig. 8.5 showing the age distribution for 50 years in
form of a 3D isosurface.

8.5 Concluding Remarks

The computation of the age and residence times of
groundwater can be easily and efficiently performed by
the present Goode method. It is applicable in both 2D
and 3D cases. The direct age simulation is a welcome
completion of particle tracking approaches; especially
in such cases if effects of hydrodynamic dispersion
becomes important, e.g., for capture zone assessments,
or, more generally, in order to make cross-checks
against the traditional particle tracking method and to
obtained closed and better representations of residence

times in 3D applications. It should be mentioned that
the direct age simulation can also be performed in the
sense of a backtracing. In this case the boundary condi-
tions for the groundwater age have to be ’reversed’
(inflow boundaries becoming outflow boundaries, and
vice versa). For backtracing a reverse flow field is nec-
essary during the age computations. FEFLOW pro-
vides a specific option termed as "Reverse flow field’
which can be set in the Specific option settings’ menu.
Further modifications of Goode’s method appears pos-
sible. The extensions to transient flow problems are
described by Goode® and Varne & Carrera®.



Figure 8.4 3D pathlines at selected starting points and isochrones marked at 10, 20, 30, 40 and 50 years as computed
by FEFLOW?’s particle tracking method.

FEFLOW | 147



Figure 8.5 Computed age distribution for 50 years in the 3D flow domain forming a 3D isosurface.
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Discrete feature modeling of flow, mass and heat
transport processes by using FEFLOW

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

9.1 The Discrete
Approach

Feature

The discrete feature approach provides the crucial
link between the complex geometries for subsurface
and surface continua in modeling flow, contaminant
mass and heat transport processes. In this holistic
approach a three-dimensional geometry of the subsur-
face domain (aquifer system, rock masses) in describ-
ing a porous matrix structure can be combined by
interconnected one-dimensional and/or two-dimen-
sional features as shown in Fig. 9.1. In the finite-ele-
ment context the three-dimensional mesh for the
porous matrix can be enriched by both ’bar’ (channels,
mine stopes) and areal (overland, fault) elements.

9.2 The 1D and 2D Discrete
Feature Elements Used

FEFLOW? provides 1D and 2D discrete feature ele-
ments which can be mixed with the porous matrix ele-
ments in two and three dimensions. Different laws of

fluid motion can be defined within such discrete fea-
tures, e.g., Darcy, Hagen-Poiseuille or Manning-Strick-
ler laws. Both the geometric and physical
characteristics of the discrete feature elements provide
a large flexibility in modeling complex situations.
Table 9.1 summarizes the most important characteris-
tics and typical applications for the used 1D and 2D (as
well as 3D porous media) features.

Apparently, the range of applications and the
dimension of the features require an unified approach,
where linear and nonlinear laws of fluid motion, porous
media and free fluid flows, phreatic and non-phreatic
conditions as well as spatial (3D), plane (1D, 2D) and
axisymmetric (1D) geometries are embodied.

9.3 Preliminaries

9.3.1 Fundamental balance state-

ment

The conservation of mass, momentum and energy is
described by the balance statement? (symbols are listed
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in the Appendix A "Nomenclature”)

AV v (pyw) + V- = pf -1

conserving the (extensive) quantity (py) . Individual
balance laws for (py) , j and pf are summarized in
Tab. 9.2.
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1D channel element

/

2D fracture element

ZAN

3D porous matrix element

‘.

=
Tescmen (2
N |

T

\

R

saturated zone

Figure 9.1 Schematization of a subsurface modeling system by combining discrete feature elements with volume dis-
cretizations of the total study domain: 1D elements are used to approximate rivers, channels, wells and specific faults,
2D feature elements are appropriate for modeling runoff processes, fractured surfaces and faulty zones, and 3D ele-
ments represents the basic tessellation of the subsurface domain consisting of an aquifer-aquitard system and involving

unsaturated and saturated zones.



Table 9.1 Used discrete feature elements

Fluid motion

Type law Dimension | Application
1D, plane channels
— Darcy (phreatic, non- | mine stopes
Hagen-Poi- phreatic)
seuille - -
Manning- 1D, axisym- | pumping wells
Strickler metric abandoned
(phreatic, non- | wells, bore-
phreatic) holes
Darcy 2D, plane fractures
Hagen-Poi- | (non-phreatic) faults
i seuille
Manning- 2D, plane runoff
E Strickler (phreatic) overland flow
3D porous media
A Darc (phreatic, non- | aquifer systems
Q’ y p
= phreatic)

Table 9.2 Balance laws

Quantity Py j pf
mass

fluid mass p 0 pO o

contami-

nant mass C Je r.
momentum pv (¢} pg
energy p(E+%v2) c-vtjr |p(g-v+0Oyp)

9.3.2 Forms of balance equations

According to the applications for the discrete fea-
ture elements indicated above we are interested in four
forms of the governing balance equation (9-1):

e form A: free fluid balance law

« form B: vertically integrated free fluid balance
law

e form C: porous medium balance law

« form D: vertically integrated porous medium bal-
ance law

The form A is already represented by Eq. (9-1).

A vertical integration of (9-1) over a depth B can be
rigorously performed as described in>*® leading to the
form B:

AERY) v - (Bpyw) + V- (B)) = Bof+/yP iy " 9-2)

with the new exchange terms of the quantity y at the
top and bottom boundaries

.top _ L top T _
R IR TR ORI
o otop
] 3S (9-3)
bottom _ 1 bottom. . _
= se [ i pwOe—))ds
6Sb\)m)m

Notice, the balance quantities of Eq. (9-2) are now
averaged over the depth B.

The transformation of the balance equation (9-1) to a
porous medium is performed by a spatial averaging
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procedures referred to the representative elementary
volume (REV) composed by fluid and solid phases. It
results finally to the form C of the basic balance
statement?

.interface

%+v-(spwv)+v~(8j) = epf Ty G4

where an exchange term at the fluid-solid interface nat-
urally results

.interface _ _1_ interface
Ty 55 [

< cinterface
[N

rpww—v)]ds (9-5)

Notice, the balance quantities of the porous medium
conservation equation (9-4) are averaged over the REV
volume.

Finally, the porous medium equation (9-4) can also
be vertically integrated over the depth B, which yields
form D of the basic balance statement as

Q(—'%;ﬂ) +V - (Bepyv) +V - (Bgj) = (9-6)

.interface | .top  .bottom
Bepf+j, iy Iy

It is obvious, the balance statement (9-6) of form D is
the most general form which encompasses all other
forms when we specify the porosity ¢ as

free fluid flow

porous media flow

for 9-7)

the depth B as

=1 non-integrated form
B = . . . (9-8)
arbitrary vertically integrated form
the interface exchange term ji;terface
i =0 free fluid fl
jmterface _ for ree Tui (.)W (9-9)
v 20 porous media flow
and the top and bottom exchange terms j;(j)p, j:,mtom as
=0 non-integrated form
(j;(/)prj:,mtom) _ or . g . (9-10)
#0 vertically integrated form

9.3.3 Mathematical conventions

Both Cartesian and cylindrical coordinate systems
will be employed. They are defined as

X, ¥,z 3D
, 2D
x=17% for 9-11)
X 1D
7o,z axisymmetry

The velocity vector v is accordingly



u
v Cartesian coordinates
w
v = for (9-12)
vV
Vo cylindrical coordinates
v
z

The scalar product V - v is given by

Ou + v T ow 3D (x, y, z) Cartesian
ox 0Oy Oz
ou  Ov .
—_— 4 —
. ) ox oy 2D (x,y) Cartes1ar91 ;

(V.y) = ou (9-13)
ox 1D (x) Cartesian
10(rv,) 10v, Ov,
r or + ™ + 5z cylindrical (7, ®, z)

and the derivative operation v* for the different coor-
dinate systems is given, for instance, for the variable y
as

2 2 2
6_\;/ N 3_\5 n a_\zl’ 3D (x, y, z) Cartesian
Ox oy oz
oy, o
__% N _% 2D (x, y) Cartesian
0. 0
) = 2x v (9-14)
el
_‘g 1D (x) Cartesian
Ox
2 2
laﬁ(r%_\l{) ¥ _%Q_Ez + Q—%’ cylindrical (7, @, z)
rors ort 4 om0z

9.3.4 Gravity and variables

In the following we assume an exclusive action of
gravity in the form

g)C eX
g=-ge g=|g e=le, (9-15)
gZ eZ

As a further useful variable the hydraulic head # (pie-
zometric head) related to the reference fluid density p,
is defined

h=¢+z=-L+:z (9-16)

o

and

P = p,8(h-z) 9-17)
Thus,
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Vp—-pg = Vp+pge = pog(V¢+Vz+p;pae) (9-18)

o

P—P,

= pog(Vh+ e) = p,&(Vh+0Qe)

o

9.3.5 Hydraulic radius

The hydraulic radius is defined as the flow cross-
sectional area divided by the wetted perimeter

flow area
Py = 9-19
hydr — wetted perimeter ©-19)

Table 9.3 lists the hydraulic radii for interesting cases.

9.3.6 Free (phreatic) surface condi-
tion

A phreatic surface represents a macroscopic moving
material interface between two fluids, e.g. air and
water. A material surface F = F(x,t) = 0 is governed
by the kinematic equation

oF

+w- = -
o HwVE =0 (9-20)

The outward unit vector normal to F is defined as

= YE -
"= o (9-21)

Table 9.3 Hydraulic radii for different applications

Type Thydr
submerged rectangular cross-
section
Bb
tﬁ 2(b+B)
| b |
submerged slit plane
- bE _ b
[ - 2B 2
open rectangular cross-section
b b
b+2B
|l
open wide channel (b > 20B)
plane
V
i —— B__ g
| L b - 1+2B/b
submerged circular cross-section
KR
2nR 2

and accordingly

_ OF/dt
IV

(9-22)



where |VF| denotes the magnitude of the vector VF.
For the vertical integration along the thickness B we
can express the geometries of the top and bottom sur-
faces in the forms (Fig. 9.2)

FP= FPx 1) =z-bx, 1) } 023
Fbottom - Fbottom(x’ l‘) =5 bbottom(x’ y, l‘) =0
and

bottom

B =B(x,t) = b®(x,,t)-b (0 t)  (9-24)

top _
B (xy.1)
bottom
/ F =0
X ) ¥ datum level

Figure 9.2 Surface conditions.

For a free surface the top elevation z = »'(x, y,¢) is
identical to the hydraulic head # = h(x,y, r). Accord-
ingly, the thickness is given by

B = hibbottom (9-25)

If the bottom geometry is stationary the storage term in
(9-6) becomes

ABepy) _ »0(epy) oh i
ot B=%r teevy, (9-26)

9.3.7 Viscous stresses on surfaces

The viscous stresses on a surface v (note v can
indicate a fop and bottom surface as well as a fluid-
solid interface) result from exchange relationships (9-
3) and (9-5) if replacing the general flux vector j by
the viscous stress tensor of fluid o (cf. Table 9.2), viz.,

o = SLS f n’ - [c+pv(w—v)]dS (9-27)

v

3S

Here " stands for the stress on the surface v with nor-
mal n". It represents a surface force per unit area
depending on the orientation of the surface'’. For
instance, let us consider the stress components on a pla-
nar top surface as illustrated in Fig. 9.3. Assuming
additionally a rigid and impermeable surface
(w = v~ 0) with a constant stress property on the unit
area 3S the surface stresses are explicitly given by

cPxn'?. s (9-28)

With #'®® = (0, 1, 0) the stress components become

top _ _
o, =0c, + lcnyrOGZX =0

top _ _ _
o, = chy+ lcyy+0($zy =0 (9-29)

to|
Gp=

- 0o, + 10},Z+OGZZ =0
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Figure 9.3 Surface forces related to components of
the viscous stress tensor G .

9.4 Basic Balance Equations

9.4.1 Fluid mass conservation

The fluid mass conservation is described by speci-
fying Eq. (9-6) with Table 9.2 as

%(SpB) 1V - (spBv) = £pBO, (9-30)

which can be employed for all flow problems under
discussion when setting ¢ and B appropriately. Notice,
the sink/source term Qp includes both interfacial and
surfacial flux conditions (cf., Eq. (9-5)).
The storage term in (9-30)

0

0 op g
= +pB=+
at(ng) eB 3 pB EY ep

0B
5 (9-31)
can be expanded with regard to the hydraulic head #
and one gets with (9-26)

0 (eop) - on _
E(ng) - p(BS0+Sv)at (9 32)

where the compressibility S, and storativity S are
introduced as

(9-33)
=g

S, =ey+(l S)K}

Notice, for a free fluid we have to set ¢ = 1 and
S, =v.
Neglecting the density effects in the divergence term of
(9-30) by applying the Boussinesq approximation? the
fluid mass balance equation (9-30) yields

Oh -
S—+V.(eBv) = eB
o V() = B0 (9-34)

S = (BS,+S,)

9.4.2 Fluid momentum conservation

The fluid momentum conservation is specified from
Eq. (9-6) with Table 9.2 as

a%(ava) +V - (epBvv) = —V(eBp) (9-35)

interface

+V.(eBo')+epBg+eB(c +o'%

bott
ps N om)

where the stress tensor is splitted into the equilibrium
(pressure) and non-equilibrium (deviatory) parts as

c=-pl+d (9-36)



interface

Notice, in Eq. (9-35) the exchange term o
vanishes for free fluid motion and the terms
6'?, 6™ are dropped if the equation is not vertically
integrated.

In the following we assume the Newton’s viscosity law
(including the Stokes’s assumption'?) which is written
in the form

s = 2p[d—%(V~v)IJ (9-37)

with the strain-rate tensor

d = %[Vv+(Vv)T] (9-38)

For an incompressible fluid with a divergenceless (so-
called solenoidal) velocity V-v = 0 the momentum
equation (9-35) leads to the well-known Navier-Stokes
equation

ngg—:-k(apBwV)v = *SB(VP*Pg)"'eB“Vzv (9-39)

interface to bottom
+¢eB(o +oP-¢ )

from where specific forms can be derived as follows.

9.4.2.1 Darcy flow in porous media

Commonly, in a porous medium the velocity v is
sufficiently small, that means the Reynolds number
based on a typical pore diameter is of order unity or
smaller. As the result, the inertial effects in the momen-
tum equation (9-39) can be neglected

=0 (v-V)y=0 (9-40)

22

As the result, one yields a general momentum equation

for porous media (we consider the non-integrated form
. top bottom

with B=1,06 " = o =0)as

interface

e(Vp—pg) = €0 +euviy (9-41)

Furthermore, the drag forces due to fluid viscosity can
usually be dropped uvzvz 0 with respect to the drag
term of momentum exchange ™™ at interfaces of
phases. The interfacial drag term of momentum
exchange ™™ can be derived as a linear friction
relationship of the form3

interface
(o)

= pk71 - (gv) (9-42)

where the permeability k represents an inverse friction
tensor due to the viscous drag at the interfaces of fluid-
solid phases.

Finally, the momentum equation (9-41) reduces to the
well-known Darcy equation of the form

-k, §
v = 8“(Vp pg) (9-43a)

or with (9-18)

gy = — Kfu(Vh + ®e)

P
H, (9-43b)
n

==
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valid for flow in a porous medium.

9.4.2.2 Plane and axisymmetric parallel
(Poiseuille) flow

A flow is called parallel when inertial terms of the
Navier-Stokes equation (9-39) vanishes. That means, a
fluid particle is subjected to zero acceleration, accord-
ingly, it moves in pure translation with constant veloc-
ity. It follows that pathlines must be straight lines and
that the velocity of each particle may depend only on
coordinates perpendicular to the direction of flow. Such
flow fields occur between two parallel plates or in a
circular tube as depicted in Fig. 9.4.

N v A

“

z

b ——
- - —

Figure 9.4 a) 2D plane and b) axisymmetric Poiseuille
flow.

-
——
E————
———
——
-

vZ

For 2D parallel laminar flow (Fig. 9.4a) we have

u = u(y) v=w=0 (9-44)

and the momentum equation (9-39) in the x-direction
becomes (we consider the free fluid case with no verti-
cal integration)

2
dp - 4u
Tx P8« dez

(9-45)

Integrating (9-45) with the boundary conditions
u(0) = u(b) = 0 ityields

u=- L(?g— pgx)y(b -¥)

. (9-46)

and we obtain the average velocity in the aperture 5 as

b
2
i=l __ b (dp_ .
iy | udy 12p<dx pgx} (9-47)
y=0
and the discharge O
b (dp

which is called the cubic law of the Hagen-Poiseuille
flow. The relationships (9-47) can be expressed by the
hydraulic radius ry . if replacing the dimension 5/2
for the slit flow according to Table 9.3 (type B)

(9-49)

Similarly, for the axisymmetric flow in a circular tube
(Fig. 9.4b) with



v =y v, = v (r) v.=v_ =0 (9-50)

one solves in the z-direction the momentum equation

dp _u[o(,0v
dz P8 r[ar(rﬁrﬂ ©-31)

With dv,/dr = 0 at r = 0 and v,(R) = 0 the integra-
tion of (9-51) gives

=

_ _1(dp 2 2
v, = - 4p(dz pgz)(R r) (9-52)

Then, the average velocity for the Hagen-Poiseuille
flow in a circular tube becomes

m R 5

2

. =,R_(é£, ) )

P [ ] vordra SpldsPe) 59
o=0 r=0

and we get for the discharge through the tube

4
2_ R (d
0= wts - (% p) o

The relationships (9-53) can be expressed by the
hydraulic radius ry, 4 if replacing the dimension R/2
for the tube flow according to Table 9.3 (type E)

2

o _ dr(@i ) )
v, 20 \dz pg. (9-55)

As seen the Hagen-Poiseuille’s laws of laminar fluid
motion for 1D and 2D plane flow (9-47) and for axi-
symmetric flow (9-53) represent linear relationships
with respect to the pressure gradient and gravity
(Vp-pg). In a generalized form one yields finally
with (9-18)

v =— KfH(Vh + Oe) (9-56)

2
ThydrP o8
= hydro® I wit

" Phydr = b/2,a = 3 for 1D/2D plane
ap,

Thyar = R/2,a = 2 for axisymmetry

9.4.2.3 Laws of fluid motion for overland
and channel flow

Basically, the fluid motion for overland and channel
flow is described by the vertically integrated Navier-
Stokes equation (9-39) according to

pB% +(pBv-V)y = -B(Vp—pg) (9-57)

+BHV2V+B(Gt0p—Gbonom)

which is a formulation of the well-known De Saint-
Venant equations'. Over a wide range of practical over-
land and channel flow (Fig. 9.5) at low-to-moderate
velocity/flow regimes the inertial terms in the govern-
ing momentum balance equation (9-35) can be ignored
compared with the gravitational terms, friction and
pressure effects. Furthermore, the interior viscous
effects can be neglected over the shear stress effects at
the surfaces!®. Assuming this,
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following momentum equation can be derived
g—‘;zo (v-Vp=0  uViv=0 (9-58) g q
(Vp—pg)+p,885,=0
the momentum equation (9-57) reduces to s - [v]lv (9-62)
/T 2«
T "y d
(Vp—pg)— cFtop i Gbottom -0 (9-59) ydr

where different specific laws for the friction slopes S,
can be specified as summarized in Table 9.4 for isotro-
pic roughness coefficients.

Table 9.4 Various friction laws

Law T o S,
Newton-Taylor Jé 1 vlv
Y 8 hydr
Figure 9.5 Open channel flow.
Chezy c 1 !"””
The shear effect ' at the top (free) surface can be C T hyar
caused by wind stress. For the present application we
neglect influences caused by wind stress: Manning-Strickler M 4/3 ||2v||41;3
M1y
top Y
o P~0 (9-60)
On the other hand, the shear effect at the bottom can be Instead of using the pressure p as primary variable

expressed by a friction slope relationship of the form the hydraulic head % or the local water depth ¢ (cf.
Egs. (9-16) and (9-18)) are alternative formulations of

[vllv 9-62), viz.,
Gbottom _ pazga (9-61) ( )
T Thydr p,g(Vh+5,+0e) = 0 (9-63a)
and

representing friction laws, where [[v| = Jv-v, 1 is a
friction factor and o > 1 is a constant. As the result, the
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P8V +S8,—

§,+0e) =0
S, =-Vz

(9-63b)

where fluid density effects are included in the ©e-
term.

Equation (9-63a) can be used to derive a diffusion-
type flow equation™®. Since, exemplified for 2D

2 72
T ryarnl Si + S (9-64)

? = u*++* =

and with (9-62)

u2 + v2 A/u2 + v2
Sfx = u S/y = TV (9-65)

2 a
T Thydr T Thydr

we find with (9-63a): Sp = —(0h/0x + ©e,),
S, = —(0h/dy + Oe))
/2
Tr
4= et (P g ) (9-66)
J& @
ox oy
/2
v i (O,
Y& -G
Ox oy
or more general
v=—K(Vh+0e)
/2
K = hyar (9-67)

Yva)?

It can be easily shown that the velocity v in the rela-
tionship (9-67) tends to zero if the gradient Vi van-
ishes (provided that ® ~0)

a/2

lim v = — lim —hydr

IVh =0 9-68
Vh—0 Vh—0 4[||Vh” ( )

9.4.3 Contaminant mass conserva-
tion

The balance equation for a contaminant mass results
from Eq. (9-6) and Table 9.2 in form of

a(’%“‘Chv (BeCv)+V - (Bgj,) = Ber,  (9-69)
which can be employed for all the interesting mass
transport problems when specifying ¢ and B appropri-
ately. Notice, the reaction term 7, includes both inter-
facial and surfacial mass transfer conditions (cf., Eq.

(9-5)).

The reaction term can be splitted into a first-order
reaction rate and a zero-order production term?, respec-
tively,

Fo=-8C+0Q, (9-70)

The mass flux j. is expressed by the Fickian law in
form of

j.=-D-VC
} (9-71)

D=DJ+D,
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The hydrodynamic dispersion tensor D consists of the
molecular diffusion part D I and the mechanical dis-
persion part D, . In a porous medium D,, is commonly
described by the Scheidegger-Bear dispersion relation-
ship as

vy

D, = (ﬁT|IVI|)1+(ﬁL*Br)W 9-72)

In a free fluid flow there is a large variety for D, in
dependence on laminar and turbulent flow conditions.
For instance, in a fluid-filled tube under laminar flow
conditions D, can by estimated by Taylor’s analysis'!

p  [Eblvev
m = (48D,) TVl

Using the Fickian law (9-71) and incorporating the
continuity equation (9-30) Eq. (9-69) yields?

(9-73)

sB%—f-ﬁ-er -VC-V-(BeD-VC)

+Be(0,+ 9)C = BeQ,

(9-74)

Considering additionally sorption effects in the porous
medium the following contaminant mass transport
equation can be derived on the basis of Eq. (9-74)?

B%d%+st-VC—V-(BsD-VC) (9-75)

+B(e0,+RY)C = BeQ,

with the retardation relationships

R =e+(1-e)(C)

s+ (-2 12(0)- €] ©-76)

R, =

in which the sorption function y(C) can be specified
for Henry, Freundlich or Langmuir isotherms?.

9.4.4 Energy conservation

The energy balance equation is derived basically from
Eq. (9-6) and Table 9.2 under the assumption of a ther-

mal equilibrium between fluid (f) and solid (s) phases.
We obtain finally?

(%{B[eprf-ﬁ- (1-e)p'E'} +V - (Bep Elv)

+V - (Bjy) = Blep O+ (1-2)p'0}]

(9-77)

which can be applied to all the interesting heat trans-
port problems when specifying ¢ and B appropriately.
Notice, the thermal sink/source terms O, Oy include
both interfacial and surfacial heat transfer conditions

(cf., Eq. (9-5)).
Using the state relation for the internal energy?
dE® = c*dT

for

o=sf (9-78)

and the Fourierian heat flux as



jr=-A-VT
(9-79)

cond

A= AL AP el (1 e D,

one yields the following balance equation for the ther-
mal energy?

{Blep/d +(1-£)p’c] }g—{+ ep’dBy - VT
-V - (BA-VT)+Bep/d 0p(T-T,) (9-80)

= Blep/ O+ (1-€)p"07]

to be solved for the system temperature 7.

9.5 Generalized Model Equa-
tions

9.5.1 Flow

The fundamental flow equation represents a combi-
nation of the fluid mass conservation equation (9-34)
and the fluid momentum conservations for porous
media (9-43b), Poiseuille flow (9-56) and overland/
channel flow (9-67). As the result, Table 9.5 summa-
rizes the governing equation for the used discrete fea-
ture elements for 1D, 2D and 3D in dependence on the
problem cases under consideration. For the Poiseuille
flow and overland/channel flow standard geometric
forms of the fractures are implemented in FEFLOW.
Different geometries can be input by means of correc-
tions in the corresponding hydraulic parameters as
thoroughly described in Appendix D.

9.5.2 Contaminant mass

The governing contaminant mass transport equation
(9-75) can now be specified for the different flow con-
ditions and discrete feature elements. Table 9.6 summa-
rizes the different terms and expressions for both
porous media and free fluid conditions.

9.5.3 Heat

The specified terms for the governing heat transport
equation (9-80) are summarized in Table 9.7 for both
porous media and free fluid conditions.
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Table 9.5 Flow model equations

oh
L(h) = Safv . (KfHB (Vh+0e))-0 =0
S KfHB 0
Case Darcy Poiseuille Overland Darcy Poiseuille Overland Darcy | Poiseuille | Overland
k_png " bB "12 P&l f w2
hydrlo hydr - —
1DPP b(BS,+S,) b(By+1) b(By+1) bB ™ / ————‘3“ Ju bB 4—“——2 Ju | bBeO, bBQ, bBO,
(1D plane e [ — NIV Al
phreatic) K K
kp,g bB TmarPosl f i _
IDPN bBS, bBy bBy bB == = T bB —BL= f | bBeD, | bBO, bBO,
(1D plane non- . 2 vl
phreatic) K K
2 72
S 2 kp,g > ThyarPo&l Sty wi _
1DAP “RZ(SO+§) nRz(Y+§) T[Rz(y+§) R o Sy TR —’—‘# T TR _/'.‘d_z 1 Rc0, nRZQP nRZQp
(1D axisym- e IV al
. . K —
metric phreatic) K K
IDAN 2 2 2 2 kp,g f 2 rivdrpagl f 2"5;4;[ 2 = 2 2
nR’S, TRy Ry nR™ —=Ju mRT e nR = TRe0, TR0, TR0,
(1D axisym- Ho Ho Vv al
metric non- K K K
phreatic)
kp,g . Brz, p.el ¢ a/2 4
B kP, hydrPo T yodr . _
2DPP BS,+5, By+1 By+1 o Ju —}3“ T B 2, Bz0, BO, BO,
(2D plane — 2 vl
phreatic) K K K
2
kp,g ¢ B TiparPo8l f o
B kP, hydrPo L _
2DPN Bs, By By G agPol Sy B —mic g | gep, | B, B0,
(2D plane non- ? 2 NIVl
’ Vv
phreatic) K K Kk
3DP . P _ 2 / as2
y (3D phreatlc SO v y P08 fM ThydrPo& fp ‘l.'Vhyd;-I 7 SQp Qp Qp
' and non- Ho 3u, 4/, 2 M
Leph —— — [V Al
phreatic) K K K
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Table 9.6 Contaminant mass transport model equations

L(C) = S%—?+q-v0—v-(351)-v0)+q>c—g =0

q

BeD

Case

porous

free
fluid

porous

free
fluid

porous

free fluid

porous

free fluid

free

porous fluid

]

IDPP
(1D plane phreatic
and non-phreatic)

bBR,

bB

bBev

bBy

bBe(D,I+D,)

bB(D,I+D,,)

bB(sQ,+RNY)

bB(Q,+9)

bBeQ, | bBO.

IDAP
(1D axisymmetric
phreatic and
non-phreatic)

TR*R,

nR

2
nR ey

2
TRy

R e(D I+ D,)

~R* (DI +D,,)

nR(e0, + RY)

TR (0, + 9)

rtstQC nRZQC

E B8

2DPP
(2D plane phreatic
and non-phreatic)

BR,

Be(D,I+D,)

B(D,I+D,)

B(c0, +R9)

B(Q,+9)

BeQ, BO,

=

3DP
(3D phreatic and
non-phreatic)

R,

ev

e(DI+D,)

DJI+D,

0, + NI

0,+9

e0, 0.
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Table 9.7 Heat transport model equations

L(T) = S—+q VI-V-(BA-VI)+®(T-T,)-0 =
S q BA (0]
Case porous free fluid | porous | free fluid porous free fluid porous free fluid porous gfiz
S o o f pBOJT+ _ o bBleo O+ o
1DPP bB[ep'c + bl | bBepley | by | PBUEN* ( bBep'd0, | Y0, T e
s s ; /s P —s
(1D plane (1-£)p°c"] (1-e)A I+ p'eD,) (1-¢)p"0r]
phreatic and r
— | non-phreatic) =p''D
20 I f ) X RRoJT+ o o Reo/ Ot )
IDAP R [epie + Tchpfcf Tchspjcfv nR p/c/v “Rz{[“:}‘f+ " /;(. T[RZS’J/C/QP T[Rzp/ﬁjQp R lep Q/I Tchij/T
(1D axisym- (1-8)p'c’] (1—e) 1+ ) (1-2)p'07]
metric phreatic Py
and epcD,}
non-phreatic)
— / . : i BOJT + o Blep O+
2DPP Blep'c fs- 8o | Bep'dv | By B{[eX + 5 ’ BB, 8000, [ep Q/rﬂ B0,
(2D plane (1-8)p'c’] (1- )2’ )+ p'dD,) (1-£)p"07]
phreatic and )
non-phreatic) ep Dy}
e 3DP eplc’+ s [/ + Iya S /i7 ep/ 0+
Q’ . pc epfc/v pfc/v ) N1+pcD, epcdQp p/c/Qp - p/Q/T
“4 | (3Dphreatic | (1-¢)p’c’ (1-e)n' 11+ (1-2)p°0r
and non- o9/D,
phreatic)
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9.6 Finite Element Formula-
tions

9.6.1 Master equation, boundary
conditions and weak statement

The governing balance equations as listed in Tables
9.5, 9.6 and 9.7 can be generalized by the following
master equation

Lw) = SX 1 g Vy-V-(D-Vy)-0, = 0

ot (9-81)
Q, = -Py+0

which has to be solved for flow (y = /), contaminant
mass (y = C) and heat (v = T) for 1D, 2D and 3D
discrete feature elements.

Let QcR” and (0, T,) be the spatial and temporal
domain, respectively, where D is the number of space
dimension (1, 2 or 3) and T, is the final time, and let
0Q =T, ®T, denote the boundary of Q, where T,
and T, are two disjoint portions of the total boundary,
0Q, the following boundary conditions (B.C.’s) have

to be appended to (9-81):

y =y, on I

} (9-82)
-n-(D-Vy)+a(y,-y)=>b on T,

where on T'; we have Dirichlet BC and on T, it repre-
sents a more general form of a Robin type BC in which
more specific Neumann and Cauchy type BC’s are
involved. If « = 0 a Neumann BC of 2nd kind results,
while for » = 0 a common Cauchy BC of 3rd kind is

given. In (9-82) n corresponds to the normal unit vec-
tor (positive outward), y, and v, are prescribed
boundary values of y on I'; and I, , respectively.

The finite element formulation is based on the weak
form of the basic equation (9-81). Introducing a spatial
weighting function w we get

jw(saa—‘;" +q- vw) dQ (9-83)
Q
= J’w[v.(z)-w)+Qw]dQ
Q

Applying partial integration and the divergence theo-
rem (Green’s theorem) to the weak statement (9-83)
and inserting the Robin-type BC (9-82) the following
weak form for the finite element method finally results

I[w( %—‘;’ +q- wj +Vw.(D- W)Jdg (9-84)
Q

+ jwawdr = JwadQ+ jw(awfb)dr
r, Q r,

9.6.2 Spatial discretization

In the finite element context a spatial semi-discreti-
zation Q" of the continuum domain Q is achieved by
the union of a set of non-overlapping subdomains Q°,
the finite elements, as

o~a'=,0° (9-85)

e
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On any finite-element domain Q°, the unknown vari-
able y (and dependent coefficients) are replaced by a
continuous approximation that assumes the separability
of space and time, thus

Y =y () = N0 (9-86)

where i = 1, ..., M designates nodal indices, M is the
total number of nodes, ¥, is the nodal basis function,
called the trial space, and x are the spatial coordinates
(9-11). Note that the summation convention is used for

repeated indices. For the present analysis the basis
functions N; are based on C; (continuous) piece-wise

0, =305 = 3 [ sNiNae
e

EQ"

Ky =YK= 3| [
e e L0°

Fi:ZFf:

e Lo’ 5

where the subscripts i,j = 1, ..., M denote nodal indi-
ces. The superposed dot in (9-87) means differentiation
with respect to time ¢, viz.,

¢0)={%w0% (9-89)

9.6.3 Temporal discretization

The spatially discretized equation (9-87) as a com-
mon first-order differential equation in time can practi-

VN, + VN, (D - VN,) + ON,N,)dQ + f aN,N,dr

3 .[Nl.QdQ + .[Nl.(a\yz —b)dl

polynomials that are piecewise-continuously differen-
tiable and square integrable (but whose second and
higher derivatives need not to exist).

Using the Galerkin-based finite element method
where the test function w becomes identical to the trial
space N, Eq. (9-84) leads to the following global
matrix system of M equations

O - y+K-y—F=0 (9-87)

with its components written in indicial notation

(9-88)
I

cally only solved by numerical schemes. For stability
reasons implicit (A-stable) two-step techniques are pre-
ferred.

Considering y(z) within the finite interval
(t,,t,+At,), where the subscript n denotes the time
plane and Az, is a variable time step length, the func-
tion wy(¢) is defined as

v' = () (9-90)



at the previous (old) time plane and as

n+1

\} = y(t, +At) (9-91)

at the new time plane.

9.6.3.1 o-Method

Introducing a weighting coefficient (0<6<1), we
can write

y(t, +0AL) = By(z, +At)+(1-0)y(z,)
F(t,+0At,) = OF(t, A1) +(1-0)F(t,) L (9-92)

y(t,+0AL) = By(z, + AL+ (1-0)y(z,)

Using a backward difference approximation for
y(t,+At,) and a forward difference for y(z,) one
obtains

n+1 n

y(t, +0AL) = Y——A—tf—‘i’— (9-93)

Common time stepping schemes result if choosing 6 in
an appropriate manner, viz.,

06=0 explicit scheme
0=1/2 trapezoid rule (Crank-Nicolson scheme) ¢ (9-94)
0 =1 implicit scheme

Inserting (9-92) into (9-87) the following matrix equa-
tion finally results

(a7 +KO)v" " - (A%*K(l -0y (9-95)

n

+(F" o+ F'(1-90))

9.6.3.2 Predictor-corrector method

The predictor-corrector method is thoroughly
described elsewhere>*>¢, For the present analysis the
fully implicit backward Euler (BE) scheme with a first-
order accuracy and the semi-implicit nondissipative
trapezoid rule (TR) with a second-order accuracy are
enforced. The time derivatives are approximated, for
the BE scheme, by

yroler v (9-96)

and for the TR scheme, by

-n+1 _ i( n+1
v (v

n

vy 9-97)
Inserting (9-96) and (9-97) into (9-87) results in

(&+K)Wn+l _ 0{6\1%%61)1)“}#1“ (9-98)

with 6 e (%, 1) for the TR and BE scheme, respec-
tively.
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9.6.4 Finite-element basis operations

A fundamental aspect of the finite-element method
is the use of master elements where all element-data
inner products and integrations are performed in gener-

alized (local) coordinates (see Fig. 9.6). The coordinate
transformation (or mapping) that bridges a computa-
tional (transform) n -space and the Euclidean space R”
is

o

R o——
-1) +1)
( g
n T, M —x°=x(n)
¢L1) i (Ln
Rz
T
£

(-1,-1) (1,-1)

Figure 9.6 Finite elements with one-to-one mapping onto R” (D =1,2,3).

T,o N—>x = x(n)

& -1<¢<1
n=1In -1<n<1
c -1<¢<1
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(9-99)

Based on (9-99) it is convenient to express the basis
functions N, in local n -coordinates for each element e,
viz.,



Ni = Ni(x) = U/\’f(ﬂ) (9-100) with x = (x}, x,, x3) according to (9-11). To evaluate
the flux vector divergence terms in (9-88) the inverse

e

x = Nix; Jacobian is required
The mapping t, is one-to-one and onto its range pro- ‘E
vided the transformation Jacobian J is nonsingular, ot
here in the R® space _1| ON;
W p vN, = (9-102)
on
o o,
F3 oC
2 ;" JnJin i <
X
J = % = % {x|,x2»x3} = |Jay Jn I3 (9-101) where
o J31 I3 J33
o
_6x1 Ox, 8x3_
5t Ot OF
_ |Ox| Ox, Ox;
on on on
Ox; 0x, Ox3
10C ¢ oC]
| (U2/33 = J32723) (13932 =J12733) (V12J23 =J13700) X
¥l (J31/23 = /a1 d33) (a3 =J13l3y) (o di3=Jpsdyy)| im0 R
LB (21932 =J31720) (V12d31 = I32011) Uiidan =J12001)
Jh=4= _ (9-103)
ox 1 J -J 2
i 2 i in R
21 Y
1 . 1
— in R
(/1
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with the determinant of J

Jll(‘]22‘]33 B J32J23) - J21 (J12J33 7‘]13‘]32) + J31(J12J23 7‘]13‘]22)
”J” N ‘]11’]22_‘]21’]12

‘]11

The master element matrices appearing in (9-87) and
(9-88) are to be integrated over element volumes Q°
and surfaces I'°. The integration in local coordinates
becomes for a volume’ element

dxdydz = |J|d&dndg
dxdy = |J|d&dn Cartesian RD(D =1,2,3)
dQ = dx = |Jl|dg (9-105)

rdrdodz = 2n|J|rd&dn  axisymmetric

and for an ’areal’ element in Cartesian coordinates of
RD(D =1, 2,3) space:
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in R
in R2
in R1

(9-104)



dr

ZLl|ldedn = |det|J)| Ji5 Ji3

08| |on
Wl x|
o€ on
oz| ez
o8l [on]
x| [odf
on| |ag
Y| x|
an| o
oz| ez
on] (oG
ox| [ay
ot |o¢
Wl x|
og| |o¢
oz| ez
o8 [og)
éi

0¢ de =
oy

Log]

X

on dn =
w

Lon]

S

V21 Iz I

ik
dndG = |det|J,, J,, Jos
/31 /32 3]

/31 J32 I3

T 2
dg = JJy tJy, dg

2
dn = S5 +Jy dn

dgdn

dnde,

dEdG = |det|J,; J, J ;5||dEdC

Ji2l3=J13In
= | 1321 —J11 03| |48
122 =/ 1221

Jopd33 =035
= | |Jasd31 = oy 33| dNG
/21732 = J22/31]

Sty —J13/5
Ji3d31 =I5 | 464G

J11J327J12J31
at n ==l
at & ==l

at

at

at

(9-106)
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and in cylindrical coordinates of R (meridional) space

6}’_

—_— _J T
B\ rdedo = 21| V|rde = 2m [, + Ty rd at M =+l
oz J1n
5 712
dr = E‘ (9-107)
or -
on J
on rdndo = 2n||"?|rdn = 2= /ng +J5, rdn at g ==1
oz In
on| o
where r = N,(n)r;. Commonly, for 2D and 3D element a Gaussian quadrature rule, e.g.,
entities the volume and area integrals are evaluated via
111 M Gauss " Gauss " Gauss
jf(x)dfz z j a2 = S [ [AEnOdednds = 3 3 S S wawwy (&, &)
e _1-1-1 € i=1j=1k=1 (9-108)

[g(x)dr
r

=3 [e(mydr =
el,

€ —1-1

where the ng, . is the number of Gauss points, w; are
weighting coefficients and the indices (i,/, k) indicate
the positions of the evaluation points in their local
coordinates m . The functions f{.) and g(.) in the inte-
grands are marked by an asterisk if the volume and sur-
face integrals are expressed in the n -coordinates
according to (9-105), and .

For 1D elements the integrals of (9-88) can easily
evaluated in a direct analytical manner so as shown in
Appendix B for a channel element with a linear basis
function N.

" Gauss " Gauss

> j j g Em)dedn = 35 T wowe*(E,m)

¢ i=1j=1

9.6.5 Assembly of the different fea-
ture elements to the global system
matrix

9.6.5.1
tion

Needs for coordinate transforma-

The global matrix equations (9-87) written in the
form



O-y+K-y—F =0
0=z¢
e

K- YK (9-109)

e

F=zﬁ

represent the standard discrete system resulting from
the summation (assembly) of the elemental (e) matrix
contributions. The integrals of the matrices and vectors
0°, K° and F° for each element e are performed in the
local coordinates n for the corresponding Euclidean
space R” as stated above.

Under normal conditions 1D finite elements are
mapped to the R' space, 2D elements to the R space
and 3D elements to the R’ space. In such case the map-
ping is strictly one-to-one, that means 3 global coordi-
nates x,y,z are transformed to 3 local coordinates
&, m, ¢ in 3D, 2 global coordinates x, y to 2 local coor-
dinates £, in 2D and 1 global coordinate x to 1 local
coordinate & in 1D. However, when 1D and 2D dis-
crete feature elements are generally mapped onto a 3D
global space, the number of local coordinates n will be
less than the number of global coordinates x and the
Jacobian J (9-101) will not be any more an invertible
square matrix (e.g., for the & —n -system of a 2D fea-
ture element mapped into the global x -y —z-system
the third  row of J contains ZEros,
Jy1 = J3p = J33 = 0, because the -coordinate does
not exist in 2D elements).

There is a simple way to overcome this mapping

conflicts. We take into consideration that all flow and
transport processes are invariant with respect to a rota-
tion (orthogonal transformation) of the global coordi-
nates x . Accordingly, we can arbitrarily rotate x to the
x' -coordinates by using a suitable matrix of directional
cosines a as

x'=a-x
’ a a a

x' _ 11 %12 413| |x (9-110)
y dpy dpp Azl |y

!

z azy dzp dz;| Lz

Taking an appropriate rotation of the global x—y—z-
coordinate system in such a way that the resulting local
x'—y'—z' -system becomes aligned to the orientation
of the 2D or 1D elements in the R’ space, there will be
no more an elemental contribution to the z’' -direction
for 2D elements and elemental contributions to the y’ -
and z' -directions for 1D elements (see Fig. 9.7).

The advantages of this coordinate transformation
are that the corresponding Jacobian J'

- o

JI
on

(9-111)

becomes again an invertible square matrix and the stan-
dard metric procedure can be maintained in the assem-
bly process for the global matrix system (9-109). To
ease the computations the x’ — ' —z’ -coordinate system
may, in fact, be different for every element e.
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M Sx¢ = x’e(n)
2! 2D element in the R’ space

(-1,1) (L,1)

' ' e
' 2
(-1,-1) (1,-1)

z
y
x
1D element in the R’ space
z
—_— “ -1 i (+1)

X

Figure 9.7 Global x —y — z -coordinate system, rotated elemental x' —y’ —z' -coordinate system and local &— (n) -coor-
dinate system for 2D and 1D elements in the R~ space.

9.6.5.2 Generalized discrete system

x'=a°x x=aTe-x'
Since the rotation matrix @ forms an orthonormal e e e_aTe e (9-112)
basis we can transform between the x - and the x’ -sys- v v v . v
F‘=T-F FF=T°F°

tem according to
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where

a0 0 ..
T'=| 040 (9-113)
0 0a°

is a diagonal directional cosines matrix built up of a°
matrices in a number equal to that of the nodes in the
element e

and
Te e e e
a 0 0 ay; a, az
Te Te Te
= 0 0 =] e e e _
T a ) a al, a5, as, (9-114)
0 0 a‘

e e e
dy3 dp3 A3z

are the transposes of matrices T° and a°, respectively.
P p Y.

We can usually assume that any directional proper-
ties of the discrete system (9-109) are available in the
local x'-coordinates. Then, the local (elemental) sys-
tem matrix K’ = K, is transformed into the global
matrix K° according to

e e e e e
’ Kl . ’ :KI . 1’6'
q ) v T( V) (9-115a)
e e _ e 1€ e _ e
¢ =T °q°=[T° (K" T) -y =Ky

K =T (K° T (9-115b)

where ¢'° and ¢° represent elemental *flux’ compo-
nents for the local and the global coordinate system,
respectively. On inserting (9-112), (9-115a) and (9-
115b), using the same transformation rules for the stor-
age matrix O and assuming that in general the right-
hand side vector F can also be directionally dependent,
the global matrix system (9-109) yields finally the form

O y+K-y—F=0
0=3[T"(0° 1]

K = Z[TTE' (K,e. Te)] (9—1]6)

F=3(1"F°

where the rotation matrix 7° is evaluated at element
level e. Practically, 7° is only required for mapping 2D
and 1D feature elements in the general R space, while
3D elements need not to rotate to the x'-system (the
rotation matrix becomes unity T°=1I) and can be
directly mapped onto the local n -space via the Jaco-
bian J (9-101).

However, there are important special cases to be
considered here. Firstly, if the material properties of the
square matrices 0'° and K'° are independent of the
coordinate directions (isotropic conditions) then we
have
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[TTe.(O,e. Te)] _ Oe

(9-117)
(77 (K- 19] = K°

because 7'°- T° = I due to the condition of orthogo-
nality and accordingly 0° = 0'°, K° = K'°.

Secondly, if the sink/source and boundary condition
terms incorporated in the right-hand side vector F rep-
resent direction-independent quantities so as occurred
in the balance equations summarized in Tables 9.5, 9.6
and 9.7, the vector F consists of nodal scalars and can
be directly evaluated (no rotation), viz.,

(9-118)

F = ZF’e
e

9.6.5.3 Determination of the directional

. e
cosines a of element e

The directional cosines «° are only required for
mapping 2D and 1D discrete feature elements in the R
space. If we commonly assume that the 3D continuum
domain Q with its boundary 0Q is completely filled
by 3D finite elements (e.g., hexahedral or pentahedral
isoparametric elements), the 2D fracture and 1D chan-
nel elements share the nodal points of the 3D mesh and
their geometric extents are aligned to surfaces, edges or
diagonals of the 3D matrix elements (Fig. 9.8).

For 2D fracture elements E forming sur-
faces of the 3D matrix element it is convenient to
derive the directional cosines directly from the shape of
the 3D element. We can construct the 2 directional vec-

tors u, and u, (Fig. 9.8), which are parallel to the
local & - and m -axes, respectively. They can be found
by the following shape-derived relationships

gé Ji
a_)é = |/ at ==+l
oz| 113
16¢]
on J
21
u, = S_Ty] = |/, at &=+l (9-119)
oz /23]
Lon]
ox
ZC J5
a9l =\ at = +1
ac 32 n
@ J33
B




2D fracture element
at top surface

|
|
I
|
I u, P4
I | -
7
| s
° ——— == = -

'€

1D channel element
at an edge m

Figure 9.8 Exemplified mapping of 2D fracture elements and 1D channel elements aligned to surfaces, edges and diago-

nals, respectively, for a 3D finite matrix element. Local and global coordinates.

2D fracture element
at a side surface

1D channel element
through the diagonal
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ox
on I
| = J at = +1
an 22 C
Q J23
o]
_@_
o¢ I3
u, = glc = |/ at &=+l (9-120)
QZ ‘]33
2q
_@_
0¢ Ji
oyl — —
N =g at = +1
ot 12 n
QE J13
108

These directional vectors can be easily used to compute
the directional cosines according to

T
u, e =1,2
ai, = cos(u,e;) = ——=~— for (9-121)
v v j=123
i 2
=1
with the basis (unit) vectors
1 0 0
e =10 e, = |1 e; = |0 (9-122)
0 0 1

Notice, for 2D feature elements (fracs) we need
only two directional vectors (i = 1,2), the remaining
directional cosines ag ; are meaningless.

Often we can assume that the 2D feature elements
are perfectly flat, i.e., they represent noncurved 2D
geometries which occur for arbitrarily oriented linear
triangles or for vertical linear quadrilaterals in the 3D
space. Instead of using the above shape-derived expres-
sions (9-119) and (9-120), in such cases it is convenient
to derive the directional vectors u; in a direct manner
(see Fig. 9.9).

We specify the x’ -axis along the edge nm of the 2D
feature element. The vector u, is accordingly given by

(9-123)

The second directional vector u, derived by simple
vector algebra (as summarized in the Appendix C)
yields

q-u
u, = qi(ul-ul)ul (9-124a)

with the auxiliary vector ¢ formed along the adjacent
side /m of the 2D element as

(9-124b)



Figure 9.9 Directional vectors u; (i = 1,2) for a linear triangular element and a vertically-oriented linear quad-

rilateral element.

and the directional cosines af]. (i=1,2;j=1,2,3)can be
easily computed by using (9-121).

For 1D channel elements the same procedure
can be applied to determine a;. (fori=1;;=123).
Here, only one row a; of the rotation matrix is of
interest. Taking into consideration that 1D feature ele-
ments can be rather arbitrarily placed at mesh nodes
(which are not necessarily connected in one element
and oriented along edges) the following direct evalua-
tion procedure can be used to compute a} ; fora 1D lin-
ear channel element spanning between the two nodes n

and m (cf. Fig. 9.8):

Xn = Xm Ax
Uy = Y= Ym| = |AY
Z, =2, Az

|u1| = «/sz +Ay2+A22

Ax

A/sz + Ay2 +AZ

Ay

JAXE + AY? + AZ?

Az

A Ax® + Ay2 +AZ

e —
ap =
e —
aip =

e —
a3 =

(9-125a)

(9-125b)
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9.6.5.4 Demonstrative example

To demonstrate the assembly process for the differ-
ent feature elements let us consider the simple model as
shown in Fig. 9.10 consisting of only one 3D element
(e = 1) connected with both a 2D fracture element (e =
2) and a 1D channel element (e = 3).

Node [uiit] [uﬁit] [uliit]
1 1. 1 0.
2 11 1 0.
3 7. 11 0.
4 1. 1 7
5 1. 1 9
6 7 11. 11

Figure 9.10 3D prismatic matrix element connected with a 2D fracture element on the top surface and a 1D
channel element through a diagonal.

The assembly of the resulting matrix system has to be
performed according to (9-116), viz.,
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O y+K-y—F=0

0 = [TTI'(OII'TI)]J"[TTZ'(O'Z'TZ) + T3.(0,3.13)]

Tl 11 2 12 73 3P (6-126)
K=[r" &' 1h+1" - (k N+[T (K™ -T)]
F = (TT1~F’1)+(TT FH+ (1" F

For the 3D triangular prism (e = 1) it is assumed that
the elemental material properties can be specified in
the global coordinates (x —y —z ). Here, there is no need

100...
010
001

For the 2D triangular fracture element (e = 2) the direc-
tional vectors are given by

10 6 6
u = |o q=110 u, = 10| -
2 4 4

where the formula (9-124a) is used. We note that
|uy| = 10.198 and |u,| = 10.370. It leads to the follow-
ing directional cosines (9-121)

for coordinate transformation into the x’ -y’ —z' -coor-
dinates. Accordingly,

o' K - K Fl = F (9-127)
.
[6104] |0
S| 0] [-0s38s
— o= 10 (9-128)
10| 2] 26923
(10020
,24
t = 0.6538
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09806 0  0.1961 09806 0 0.1961 ...

@ = | 20,0519 0.9843 0.2596 T = | 00519 0.9843 0.2596 (9-129)
and we get the matrices to be assembled for the ele-
ment (e =2) as
2 2
0.9806 —0.0519 . ... || | O O%y 0o || 09806 0  0.1961 ...
0 0.9843 . 2 2 —0.0519 0.9843 0.2596 if ani i
o°,,0°,.0 if anisotropic
T2 _
[T (011 = {| 0.1961 0259 . ey
0 0 0
2 . .
(Y if isotropic
(9-130)
similar for [T2- (K" - T7)]
2
0.9806 —0.0519 . ... || Fy
™ 5 0 0.9843 . Fi, if directional
(T""-F") = 1] 0.1961 0.2596 . 0
F if scalar
. 4
Taking the u, -vector for the 1D channel element u, = |10 juy| = 14.036 (9-131)
(e=3) 0
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we obtain

0.2850 —0.7125 0.6412

P

and finally the matrices for the element (e = 3) as

(.07 1)) =

similar for [TT3 . (K'3 . 73)]

1. F =

0.2850 .. .. ||| 02, 00 .. || 02850 -0.7125 0.6412 ...

~0.7125 . . 0 00
0.6412 .. 0 00

3

Y if isotropic

-0.7125 . .
0.6412 ..

0.2850 .. ... || F.,
0 if directional
0

F if scalar

0.2850 —0.7125 0.6412 ...

(9-132)

if anisotropic

(9-133)
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Appendix A

Nomenclature

In the above the symbols have the following meaning:

Latin symbols

N}
I

> > W S
Il

X
([t

~N 988
Il

flow area, (Lz) ;

coefficient to
conditions;

specify boundary

rotation matrix;
thickness or depth, (L) ;
aperture or surface elevation, (L) ;

coefficient to specify boundary
conditions;

concentration, (ML73) ;

Chle%/ . roughness  coefficient,

(LT )

specific heat capacity of fluid and
solid, respectively, (LZT 72®71) ;
space dimension, (1, 2 or 3);

tensor of hydrodynamic dispersion,
@’

molecular diffusion, (L2 T _1) ;
tensor of mechanical dispersion,
@’ry;

strain-rate tensor of fluid, (T_l) ;
internal (thermal) energy density,
wr;

gravitational unit vector, (1) ;

basis vectors, (1) ;

material surface;

specific ~ rate  of

production;

temporary



general function;

viscosity relation function, (1) ;
gravitational acceleration, (LT 72) ;
general function;

gravity vector, (LT 72) ;

hydraulic head, (L);

unit (identity) tensor, (1) ;

Jacobian matrix;

flux vector;

Fickian mass flux vector,
(MLT )

Fourierian heat flux  vector,
MT7);

surface or interface exchange,
ML)

(kp,g)/ 1, > teng(l)r of hydraulic
conductivity, (LT ") ;

tensor function specifying different
laws of flow motion, (LT ") ;

tensor of permeability, (Lz) ;
number of nodes;

Manning roughness coefficient,
(L 1731 ):

basis function;

outward-directed normal unit vector
at surface;

number of Gauss points in each local
coordinate direction;

fluid pressure, (ML_1 T_z) ;
mass source term, (ML_3 T_l)
source/sink of heat, (ML71 T73) ;
fluid mass sink/source, (T ! );
flux vector;

radius of circular tube, (L) ;

space of dimension D ;

Greek symbols

o

BrBr

retardation, (1) ;

derivative retardation, (1) ;

radius, (L) ;

homogeneous chemical reaction
rate, (ML73 7! );

hydraulic radius, (L) ;

(BS,+S,), storage term, (1) ;

bed slope, inclination of the bottom
plane to the horizontal x and y
directions, (1);

compressibility, (L) ;

vector of friction slopes at channel
bottom, (1) ;

storativity, (1) ;

temperature and reference
temperature, respectively, (®);
final time, (7);

time, (7);

coordinate vector, (L) ;

Cartesian coordinates, (L) ;

axial or vertical coordinate, (L) ;
velocity vector of fluid, (LT 71) ;
velocity vector of surface or
interface, (LTil) ;

spatial weighting function;

constant  of  friction  slope
relationship, (1) ;

longitudinal and transverse
dispersivity, respectively, (L) ;
portions 7 of boundary 6Q) ;

fluid compressibility, (Lil) ;
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At

0Q
&S
SV

@ 3

bottom

interface

o,
GP

time step length at time plane n,
()

total boundary;

projected area of surface, (Lz) ;
volume of REV, (L3) ;

porosity (= volume fraction of fluid
phase), (1)

(-1<E€<1),local coordinate, (1) ;
(-1<n<1), local
(D

local coordinate vector, (1) ;

coordinate,

(p-p,)/p,, density ratio or
buoyancy coefficient, (1) ;
weighting coefficient, (0<0<1);
chemical decay rate, (T _1) ;
eoefﬁ01ent of skeleton compressibi-
lity, (L~ )

tensor of thermal h¥dr0dynamlc
dispersion, (MLT" 0 )

thermal conductivity for ﬂuld and
solid, respectively, (MLT ‘0 )
dynamic viscosity and reference
dynamic Vlscos1ty of  fluid,
respectively, (ML~ ' )
(-1<&<1),local coordinate, (1) ;
fluid density and reference fluid
density, respectively, (ML~ )
viscous stress tensor of fluid,
ML'T?y;

dev1atory stress tensor of fluid,
ML Ty

shear stress at bottom surface,
(MLT 2y

interfacial shear stress, (ML_2 T°;

shear stress at top surface,

(MLT7);

a
Il

(G =

Subscripts

corr
e

n

ij k
o

Superscripts

< N9 v 3 ve g

e 0 =<
I

generalized friction factor;

Newton-Taylor
coefficient, (1) ;

pressure head or local water depth,
(L);

sorption function, (1) ;

roughness

balance quantity;
domain;
azimuthal angle, (°);

Nabla (vector) operator, (Lil) ;

corrected;

elemental;

time plane;

nodal or spatial indices;

reference value;

phase index;

space dimension;
elemental;

fluid (water) phase;
time plane;

solid phase;
transpose of a matrix;

surface index;



Appendix B

Analytic evaluation of matrix elements
(9-88) for a 1D channel element

We consider the following linear 2-node element e

=

4
£=-1 3 g=+1
&z

Xy X=X

with the basis functions at the nodes 1 and 2

1
Ny = E(l—é)
) (BD)
N, = 5(1 +8)
and its derivatives
ON, 1
FE)
& (B2)
N, 1
0 2

Furthermore, we have for the element, c¢f. (9-100),

x = NyxytNyxy) (B3)

and with and (B4)

ox ON, ON, Ax

[J1 = J11 = a_a = 6_§x(1)+6_§x(2) = £ (B4)

3
and

Jl=L

T (B5)

-2
Ax,

Then, the divergence terms (9-102) becomes with (B2)

o [ o

A N A
= og] = | e (B6)

vy, v, |

oE Ax,

According to (9-105)

dQ = dx = |J|dg

Ax,
— 4 (B7)

the matrices (9-88) become for element e
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03: ISE[NINI N1N2‘|dQ 4J‘|:(1—E_,) (I—E_,)]Ax a S82x6|:2 1:|
Sla-gy a+ey’ 12

1
N,VN, N,VN, e
K = eIV Y2 gy = (1-¢) (1-¢)|2%e q |-11
: iq[N2VN1N2VNJ 2Ax {(1+g)(1+g) 1R

K= [p° VN, VN, VN VN, J‘{l _1} _ {1 —1}
2
o, [YNVN, vzvzvzv2 A

|

- Jo {NNNNzl o - -8 (- e — ‘MX{N}
o, [NaNi NoNy 4|<1—a)<1+a) 6 L2

E=¢ =-1
K - ae[NlNl N1N2‘| _a’|(1-§, ) (1-¢g) _ ae|:1 o}
NyNy NyNy fer 4 (1,§2) (1+§2)2 01
F' = F|+F,
1
P oo a’QQJ'{(lé)} QA%H
Q, N2 (1+§) 2 1

(B8)

(B9)

(B10)



Finally, the discretized matrix equation (9-88) can be
summarized as

[SeAxe 2 1] i [qf il oo ] @A ] ] 0] v
Z— . + + = +—_— +a . -
- 6 12| | 2011 Ax|-11 6 |12 01 v

e
L)

(B11)

QeAxel e e | 1|] _
5 H(a y,—b )H] = {0}

Appendix C

Derivation of the orthogonal direc-
tional vectors u; for a 2D ‘flat’ element

For a linear 2D ’flat’ element we can find the fol-
lowing vectors for a typical element with the nodes
mnl(k):

Xn ™ %m X1~ X
pP=u = |y, —y, 4= |\¥=Vy (C1)
Zn " Zm 217 %

Since the vector u,=¢ v is perpendicular to the vec-
tor p=u, the dot product yields

(g-v)-p=0 (C2)

Using the parametric description of the vector v as

v=1tp (C3)

the parameter ¢ can be easily found if inserting (C3)
into (C2)

(g=wp)-p=0
4P (C4)
p-p
As aresult, we get
= (1P cs
v= (22 ()
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and finally (with p=u,)

q- (ﬁ)p

uy = g (—L)u
2~ 19 uu)

uy,=q-v =
(Co)

Appendix D

Input of cross-sectional data, standard
implementations of hydraulic radii and
their relations to different types of
fractures for the Hagen-Poiseuille and
the Manning-Strickler friction laws

In FEFLOW a reduced data set is used to input the
geometric relationships of the fractures. There is no
direct input of the hydraulic radii ry, . for the different
types of fracture elements applied to both the Hagen-
Poiseuille and the Manning-Strickler law of fluid
motion. Instead, the geometry of the cross-sections is
input by the flow area 4 for 1D elements and by the
thickness/flow depth B for 2D fracture elements (see
Table 9.8).

Table 9.8 Geometric input parameter

Dimension | Fracture type/case | Parameter
(Table 9.5)
1D IDPP, 1IDPN, 1DAP, | flow area, 4
1DAN
2D 2DPP, 2DPN thickness, B

On the other hand, the friction laws for the Hagen-
Poiseuille flow in form of Eq. (9-56) and for the Man-
ning-Strickler flow in form of Eq. (9-67) (with Table
9.4) are specified by the hydraulic aperture » and the
friction parameter M, respectively (cf. Table 9.9).

Table 9.9 Frictional input parameter

Law Parameter

Hagen-Poiseuille hydraulic aperture, b

Manning-Strickler roughness, M

Based on the input parameters b, 4 or B in
FEFLOW the following relationships of the hydraulic
radius ry 4 are implemented according to the dimen-
sion of the fracture elements. They represent so-called
standard implementations as summarized in Table 9.10.

Table 9.10 Implemented standard hydraulic radii

Thydr
Dimension | expressed by appropriate input
of fracture parameters
elements
Hagen- Manning-
Poiseuille Strickler
1D JA/4
(plane) (submerged qua-
b/2 dratic cross-sec-
(submerged slit tion)
lane, type B of
2D P able 0 3) B2
(plane) (submerged slit
plane, type B of
Table 9.3)




As seen from Table 9.10 the input parameter in form
of the hydraulic aperture » for the Hagen-Poiseuille
law and the geometric input parameter in form of the
flow area 4 or thickness B for the Manning-Strickler
law are used to express ry, 4 internally in FEFLOW.
Accordingly, FEFLOW assumes that in the case of
using a Hagen-Poiseuille law a submerged slit geome-
try is standard (both in 1D and 2D). In case of the Man-
ning-.Strickler law a submerged quadratic cross section
(4= Bz) is considered the standard geometry in 1D
and a submerged slit plane geometry is standard in 2D.
The question arises how is it possible to differ from the
standard geometry types? For example, instead of a
quadratic cross-section for a 1D fracture element, a
rectangular plane or an axisymmetric geometry is to be
used.

To specify hydraulic radii Fhydr which are different
to the embodied standard geometries (Table 9.10) one
can input corrections in the hydraulic aperture 5 for
the Hagen-Poiseuille law and in the Manning rough-
ness coefficient M for the Manning-Strickler law.
These corrected parameters can be derived in the fol-
lowing manner.

The standard hydraulic conductivity K for the

Hagen-Poiseuille law is according to Eq. (9-56) and
Table 9.10:

iy (D1)

where a = 3 for plane geometry. Furthermore, the fol-
lowing standard parameters are used here for water:

-1

p, = 10 kgm3,u0713Pas andg*981ms
-1

It results a factor of f, = p g/p, = 7.55- 10°m's
A hydraulic radius which is different from the standard
geometry, and parameters, which are different from the
standard parameter factor f, , can be derived from the
identity

2

hydr : _ Pg
20 = 1 J with - f = £ (D2)

can be obtained

A corrected hydraulic aperture b,

from (D2) as

bco” /\/ZZ f a = {3 for plane geometry (D3)

Y . .
J;l ydr 2 for axisymmetric geometry

where Phydr is the actual (true) hydraulic radius, which
can be taken from Table 9.3, and 1 is the true parameter
factor, where dynamic viscosity, gravity and density
can be specified different from the standard settings in
f,. Table 9.11 summarizes the corrected hydraulic
apertures b . for interesting applications.
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Table 9.11 Corrected apertures b
applications in the case of Hagen-Poiseuille law for

corr

1D and 2D fracture elements ®

for different

On the other hand, the standard hydraulic conduc-
tivity K for the Manning-Strickler law is according to
Eq. (9-67) with Tables 9.4 and 9.10:

Type b 2/3
P cor M(—{é) ! for 1D
submerged rectangular cross- K = Mr 2/3 I _ 4/\, ||Vh||2 (D4)
A section "hydr — > 2/3
4 ”Vh” M(g) 1 for 2D
2
5 A YIval
(b + B)
|l | Accordingly, from (D4) we can find a corrected Man-
submerged slit plane ning coefficient M. in the following form to input a
B 1 standard-different geometry of the fracture elements in
/
T b ‘f— 1D and 2D
o
| 9 £ = | | no correction is
needed if f = f, (i}zn for 1D
open rectangular cross-section M= M3 J4 D5
C corr rhydr N2/3 ( )
il (E) for 2D
eB 2Bb_[f
b+2B\)f
|l | ¢
where M is the true (physical) Manning roughness
open wide channel (5> 205) coefficient. Tables 9.12 and 9.13 summarize the correc-
D plane 3 tions M_,./M for the Manning coefficients for 1D and
i YB = i 28 f 2D fracture elements, respectively, which are required
| Lo - when fracture cross-geometries different to the stan-
dard geometry have to be input.
submerged circular cross-section
E f -
@ d
1.224745R
fo
a) fo = %”f =755.10°m7's? = Ef



Table 9.12 Corrected Manning roughness

coefficient M .. for different applications in the

case of Manning-Strickler law for 1D fracture

elements
Type M,/ M
submerged rectangular cross-
A section ( 2Bb )2/3
(b+ B4

33
| | Noteif » = B and
- - A4 = B* then

M, = M,ie.,

corr

no correction is
needed

submerged slit plane

B * (2b)2/3

b =

A
|} 5 .y v

open rectangular cross-section
c * ( 4Bb )2/ 3

'’ (b+2B)./4
|l |
open wide channel (b > 20B)

D plane

(%)2/3

submerged circular cross-section

E
(%)2/3

Table 9.13 Corrected Manning roughness

coefficient M, for different applications in the

case of Manning-Strickler law for 2D fracture

elements
Type M.,/ M
submerged rectangular cross-
A section
b 2/3
1 55
| el |

submerged slit plane

B i

[ b 1
[ -
no correction is
needed
open rectangular cross-section
C z
33 ( 2b ) 2/3
b+2B
| L |
open wide channel (b > 20B)
D plane
i, 2% = 15874
I I = i
| ——‘h—— |
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Chemical reactions

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

10.1 Introduction

FEFLOW* extends the capabilities of modeling
reversible and irreversible chemical reactions for sin-
gle-species and multispecies systems of the flow and
transport in porous media under variably saturated con-
ditions. It encompasses the following types of reac-
tions:

binary ion exchange reaction between fluid and solid
phase (adsorption isotherms)

A+BE C+D (10-1)

first-order reaction (decay)

A>P (10-2)

consecutive reaction (decay chains, serial reaction)

A>B>C (10-3)

Michaelis-Menten mechanism (Monod kinetics)

A+E® AE—>P+E (10-4)

where 4, B, ... represent chemical species (reactants,
products), the symbol — identifies the direction of
reaction, ¥ is used for reversible reactions at chem-
ical equilibrium.

In the following the basics of the reactive flow and
transport used in FEFLOW are summarized. It ends up
with a description of the fundamental transport equa-
tions, options of chemical reactions and related rate
constants available in FEFLOW.

10.2 Governing

transport
equations

10.2.1 Balance statements

The mass conservation of chemical species in the
fluid  and solid s phases of a porous medium can be
concisely written in the following form?*¢
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0 o o o o0 o o = fluid
N E(Sack)—v (D -VCH)+V (g Cp) _San k = fluid species
o Ol Ol
SOL(Rhomk+1k) = Lka = 5 solid (10-5)

=(2aCi) —€,0f

where each species, labeled by the subscript &, is asso-
ciated with a particular phase o e (f; s, ...) , where fand
s indicate the fluid and the solid phase, respectively. In
(10-5) it is

C, = concentration of species k of o -phase;

D = tensor of hydrodynamic dispersion;

[Z = diffusive flux of species & across the phase
interfaces;

k = species indicator, k = 1,...,N;

LZ = operator as defined by Eq. (10-5);

N = total number of species;

¢* = Darcy flux of « -phase;

0, = zero-order nonreactive production term of

a -phase;
Rzomk = hqu)geneous rate of reaction of species &
within the a -phase;
= phase indicator, o = f; s, ... ;
= volume fraction of o -phase;

10.2.2 Reaction rates and multiphase
aspects

The solution of the balance equations (10-5)
requires knowledge of the reaction rates for kinemati-
cally controlled reactions. Different forms of the rate

=R
[l

solid species

law can be derived. This forms depend on the type of
reaction and whether the reaction is homogeneous or
heterogeneous. While homogenous reactions take place
only in one phase (f or ), the reaction of species associ-
ated with different phases (e.g., fluid species reacts
with solid species) are referred to as a heterogeneous
reaction.

In general, if a species k exists in more than one
phase o, for instance the species is exchanged between
fluid f and solid s phase in an adsorption process, the
transport equations (10-5) have to be summed over all
phases o

Z(LZCZ) = ZsaR}?omk + Rhetk (10-6)
o o

where

Rhetk = Zsa[z (10'7)
o

is the heterogeneous reaction rate of species £ accumu-
lated over all its existing phases. Let the bulk rate of
reaction of species k in all phases be R, as’



o
Rk = ZgaRhomk+Rhetk (10-8)

o

the mass balance equation (10-6) for species k to be
solved for a multiphase system becomes

D LEC) = Ry
03

k=1..,N

(10-9)

o = f or s foreach k

If a species k exists only in one phase, say phase o,
then (10-6) is reduced to

o 0 o
LyCy = &, Rpom *+ Ry (10-10)

The transport processes of interest refer to a fluid
phase f (liquid, water) moving through a porous
medium in which the void space is variably saturated
by the f-phase. Conceptually, a variably saturated
media consists, at least, of three phases: water f, air (or
gas) a and solid s . Thus, we find the following volume
fractions

1= gte, +e, (10-11)
N

€

where ¢ is identified as the porosity (void space) of the
porous media. Since the f-phase occupies only part of
the void space, the saturation Sr of the f~phase may be
used to define the relative quantity as

E,
sp = Ef (0<s,<1) (10-12)

For saturated media s, becomes unity and &, = ¢ with
g, =0.

For unsaturated conditions s <1 it becomes appar-
ent that only a part of the total area of the solid is
exposed to ion-exchange reactions (adsorptions).
Accordingly, we can subdivide the solid volume frac-
tion g, into chemically active and inactive parts, viz.,

€ = € uve F E (10-13)

s s

and the phase

active _inactive

o =fia,s s

indicator ranges now

Obviously, the portion of the total surface of the
solid that is in contact with the f-phase depends on g
It can be assumed? that the ratio of the solid-liquid
interface to the total area of the solid is equal to the
ratio of active solid volume (i.e., solid participating in
the exchange reactions) to the total volume of solid,
and that each of these ratios, in turn, is equal to the
ratio of the liquid-occupied portion of the void space to
the total void space volume, i.e., equal to Sy Thus,

A e € active £
= = fepxd=s (1014

A sive T A jnacive
K s s

and we obtain

€ aaive = f(s_/)sszs/ss = sf(l —€) (10-15)
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In practical modeling of flow and transport in unsat-
urated media, the air-phase a is commonly assumed
stagnant. Focussing on dissolved chemical species & in
the f~phase for which the exchange to the air phase is
negligible and the exchange to the solid phase occurs
exclusively on the chemically active solid surface, the
above transport equations (10-5) have to be considered
only for the /- and s*"* -phases:

Fod 55
chi + LG =

%(g/Ci+SSC;)7V'(DQ'VCQ)J"V'(/CZ)*QI( =

where 0, = 8/Q£+ sng‘; is introduced as a nonreac-
tive bulk production term.

For a certain number of serial and parallel reactions
r = 1,..., N, itis useful to develop the reaction rate for
a species k in dependence on homogeneous and heter-
ogeneous types of reaction. This can be expressed in
the following general form3*

o
R = Y &y Ruom, * Ry, (10-18)
o
]vlrmm N,.
= Zsa Z Vit Z Vi (k=1,...,N)
o

hom
r=N,

>

r=1 +1

where

o = ﬂ Saclive (10—16)

Considering now the two-phase system of the fluid
() and solid (s*") phase, the mass transport equation
(10-6) with (10-5) for a species k can be written in the
form

' s
SjR{10mk + 8_q““"‘“Rhomk + Rhetk
, (10-17)
S
kaﬁom,{ + SS“““Rhomk + Rhetk
Ry
N = total number of reactions;
NEOIT] .
. = number of homogeneous reactions
om .
(N"<N);
r, = rate of reaction r associated with the type
of reaction r ;
V.. = stoichiometric number of species k and
reaction 7.
Note, the number of heterogeneous reactions is
hom
N ro N r

10.3 Basic chemical kinetics
10.3.1 Reaction stoichiometry
The basis of the chemical modeling represents the

equations of reactions » which can be written in their
general stoichiometric form?



Sforward reactions k.,

+

‘vlr’Al + ’V2r|A2 + ...+ ‘vNor

backward reactions k_

|V1r|A1 + |\/2V|A2 +...+ |vNor

for N°<N (N° =number of reactants)
and r = 1,...,N,
which is related and quantified by the stoichiometric
coefficients |v,,|. The algebraic stoichiometric num-
bers v, behave:

vy, <0 for 1<k<N° (reactants)
vy, >0 for N°<k<N (products).

10.3.2 Rate laws and rate constants

Based on that stoichiometric form the reaction rates
r, for the forward (r=1)and backward (r = 2) reac-
tions can be expressed by the rate laws

e
=kl (4,

k=1 (10-21)

N
KT [B,J'V“‘

k=N+1

)

(10-19)

Aye = Ve s 1)l Bove 1) TVave + 2y Bave s 2) T F [V By

(10-20)

Aye < Vs ndBave s 1y Ve s Bave v 2yt F Vil By

where k" and k' are rate constants. The square bracket
symbol [.] refers to the (chemical) activity of the kth
species. The activity can be replaced by the product of
the activity coefficient y, and the concentration C,,

e.g.,

(4] = 7 C (10-22)
The activity coefficients y, can be determined using
empirical relationships, for example the Debye-

Hiickel or Davies equations’. For dilute solutions, v,
approaches unity.

10.3.3 Chemical equilibrium and law
of mass action (LMA)

Chemical equilibrium describes a situation in which
forward and backward reactions are equal. It means

R, =0 forall & (10-23)
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or applied to the rate laws (10-21) with (10-18)

+ - .
e (Vi1 +vk2r2) = 0 if homogeneous

R, =
k - -
Vkl’”r +Vgor, = 0 if heterogeneous (10-24)

forall &

Since
Vi = —|v for reactants
a = (10-25)
Vi = HVig for products

itis

Vialry = [Vialrt (10-26)

and with (10-21)

N
+ H [Bk]lv,{z‘
= |Vk1|k — k=N°+1 (10_27)
eq - N°
|Viol K 1 il
k

k=1

Expression (10-27) is known as the law of mass action
(LMA), where k. is the equilibrium constant to be
known (measurable) for given equilibrium reactions 1
and 2.

For example, considering the more simplified equi-
librium reactions in form of (10-1) in the form

+

ka
A+Bo C+D (10-28)
kq
the LMA expression is
k+
K, = -« - <Dl (10-29)

10.3.4 The steady-state approximation

The steady-state approximation' (SSA) assumes
that, during the major part of the reaction, the rates of
change of concentrations of all reaction intermediates
are negligibly small, i.e.,

R 0 (10-30)

intermediate ~

For example, considering the consecutive reaction of
(10-3) in the form

k, k, (10-31)
A > B - C
the SSA applied for the species B becomes
k,[A]—k,[B] = 0 (10-32)

10.3.5 Pre-equilibria

Considering the consecutive reactions



a k
A+B& C 3P (10-33)
-

the pre-equilibrium arises when the rates of formation
of the intermediate and its decay back into reactants are
much faster than its rate of formation of products.
Applying the SSA scheme to species C of (10-33) it
yields (exemplified for a homogeneous reaction in the
o -phase)

Ri_c~= aa(kZ[A][B]fk;[C]fkb[C])zO (10-34)

If k;r » k, and k » k, it can be assumed that 4, B and C
are in equilibrium. Thus, the %, -term in (10-34) van-
ishes and one gets

=

4
= 4 _
Keq__

(10-35)

a

Then, the reaction rate for species C takes the form

Ri— ¢ = ~e4k,[C] = ~s kK [4][B] (10-36)

which represents a second-order reaction law.

On the other hand, the following reaction system

A+Bo C+D
K (10-37)

A —> P

can be simplified with the pre-equilibrium assumption.
The reaction rate of 4 simplifies to

+

Ri_ = —&4k [A][B1+e,k [CI[D] —g,k,[4] =~ —g,k,[4] (10-38)

“Cata

K =-24=
Tl T T B

10.4 Selected
cesses

reaction pro-

10.4.1 lon-exchange reactions

(adsorption isotherms)

Consider the reversible binary ion exchange (heter-
ogeneous) reactions between the fluid species A’; and
the sorbed (solid) species A‘; in the form

VA Vol @ [v|4] + |v,|4) (10-39)

At the equilibrium the LMA (10-27) yields
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Vi V| Vi [Vl

(12Ch)

(12C)

ZH IR VA (e

e I
ARV e

eq

10-40
v L 1049

Introducing the ion exchange capacity Cj for the
sorbed species in form of

Cr = Zc;i (10-41)
k

and the total solution normality for the fluid phase f'as

(10-42)

=3
k

Both €} and dT represent constant (measurable)
capacities, so that for the binary ion exchange reaction
(10-39) with C = C}+C, and C, =+ the
LMA relationship (10-40) can be used to explicitly
express the (sorbed) solid species C| as a function of
the (dissolved) fluid species C’; , viz.4,

C =y (- (10-43)

where y, (Cfl') is the adsorption function.

For monovalence |vi| = |v,| = 1 the Langmuir

i+ ric

et eanCl1 -V - (0] V) +V - (d -0 =

adsorption isotherm can be directly derived? from (10-
40). It leads to the following adsorption function

: k
0u(C) = ——
1+k,C,

(10-44)

where k| and &, are sorption coefficients.
Admitting for low concentrations kZC’; «1 the well-
know Henry adsorption isotherm results

X = k| (10-45)

Y]CYT .
Note, k; = K., when — =1 (see Diersch?).

1,0
In the case of heterovalent equilibrium reactions
[Vq|> 1, |v,| > 1 a polynomial expression in form of the
Feundlich adsorption isotherm results’

: by—1
1(Ch) = b)) (10-46)

where b, is a sorption coefficient and b, is a sorption
exponent.

Considering the species & = 1 in the fluid and
active solid phase o = £, s the summation transport
equation (10-6) and (10-17) is obtained in the form:

A s
Sthom1 + Ss”"""Rhom 1

i (10-47)
S
sz’;mml + & s Rpom,



which represents a single-species transport equation for
the fluid species d . In it is assumed that no further
heterogeneous  reactions occur, so that Ry, =0
according to (10-39). In a more general form it reads

%(sfmkck) ~V.(D-VC)+V-(qC)-0,  (10-43)

: s
= s/R’;lomk + ssmweRhomk

in introducing the retardation factor R, (by using (10-
15) and (10-12))

€
S

e & —
R, = 1+2—y, = 1+—-ff(sf)xkz1+1—gxk (10-49)
& &

&

with the adsorption function y,

ky Henry
ky .
T =11 ThC, Langmuir (10-50)
by—1
b,C,* Freundlich

where C, = Ciz , 1s defined.

The right-hand side of and (10-48) describes irre-
versible homogeneous reactions of the species in the
fluid and solid phase. Under exclusive reversible reac-
tions as described by the stoichiometric equation (10-
39) the homogeneous reaction rates Rﬁoml and waml of
the species in the fluid and solid phase, respectively,
vanishes, 1.e., Rhom] = Rfmm = 0. However, parallel to
reversible reaction (10-39), reaction kinetics can occur
for the species k both in the f~ and the active s-phase

which will be described next.

10.4.2 First-order decay reactions

Additionally to the reversible heterogeneous reac-
tion (10-39) the species k in the f~ and active s-phase
should be subjected to a irreversible homogeneous
first-order decay into products P according to

Vil VA4S € v+ |v)4) (10-51a)
A, “ o p (10-51b)
k
4, S5 P

We can assume that the reversible heterogeneous reac-
tion (10-51a) is much faster than the decay reactions
(10-51b). Under such conditions the pre-equilibrium
assumption (10-38) becomes applicable. It leads to the
following homogeneous reaction rates for the species &
in the f~ and s-phase

_ J1 _ S
hom, — —*a[44] = —k 1 Gy
(10-52)
) s

S )
Ryom, = —kal4;] = kv, Cp = k10 Ci

where the solid (sorbed) species C) is replaced by the
fluid species C“,L due to the equilibrium relationship
(10-43).

Inserting the reaction rates (10-52) into (10-48) the
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following transport equation results

%(afﬂ?kck) ~V-(D-VC)+V-(qC)-0Q,  (10-53)

= —£M,9,C;

where the first-order decay rate 9, is introduced as

8, = kv, (10-54)

and the retardation factor R, is defined as in (10-49).

10.4.3 Michaelis-Menten mechanism

The Michaelis-Menten mechanism describes an
enzyme-catalyzed reaction in which a species 4 is con-
verted into products P in dependence on the concentra-
tion of the enzyme E. The mechanism is the following

+

ka kb
A+E (= EA — P+E

k

a

(10-55)

where EA denotes a bound state of the enzyme and its
species. We can analyze the mechanism if assuming a
pre-equilibrium for EA4. The reaction rate for £4 is as
exemplified of a homogeneous reaction in the o -phase

ko ko Ry

Rpy = Sa(rA 7”EA7”EA) (10-56)

= ¢, (k,[A1[E] - k,[EA]—k,[EA]) = 0

It follows

(10-57)

Introducing the total concentration of enzyme as

[E;] = [E]+[EA] (10-58)

and assuming only a little enzyme is added so that [4]
differs only slightly from its total concentration, then

[A1([E7] - [EA])

[EA] = . (10-59)
which rearranges to
_ [E7][4]
[E4] = kT ] (10-60)

The reaction rate for species 4 in the a -phase is

Ry =~ k [A][E]+ e,k [EA] (10-61)

which can be simplified by applying the pre-equilib-
rium condition (10-56) as

Ry = —eyk,[EA] (10-62)

Inserting (10-60) into (10-62) it yields finally



ky[E/1[A4] v, C5y

R,=-¢ = g —5- (10-63)
TR T

where

v, = kplE7] maximum velocity of enzymolysis

k (10-64)
Michaelis (Monod) constant

We can generalize the reaction if we assume that the
Michaelis-Menten kinetics is subjected to both the
fluid and solid species k of the reversible homogeneous
reaction according to (10-51a). In doing so, we are
interested in the reactions

Vil VA v+ |v)4) (10-65a)
+
. a kb
A+E > EA > P+E
k,
(10-65b)
.
a kb
A+E > EA - PHE
k,

which lead to the following reaction rates

Rf _ Vmci
hom,,
K+ G
, (10-66)
RS _ Vmcjf _ vmek
hom, ~— c - 7
Km + k Km + Xck

Inserting the reaction rates (10-66) into (10-48) the fol-
lowing transport equation results

%(sfmkck) ~V-(D-VC)+V-(gC-0,  (10-67)

= —/(R, + 99 C;

with the modifying function

Xk—l

0 = (10-68a)

1+-=

Cr

and a specific Michaelis-Menten reaction rate as

m Vm
= — 10-68b
Sk Km + Xka ( )

where the retardation factor R, and the sorption func-
tion x, are according to (10-49) and (10-50), respec-
tively.

10.4.4 Consecutive reactions

Considering consecutive reactions (termed also as
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decay chains or serial reactions!'?, typical in radioactive
decay) in the following form

k, Kk

(10-69)
cC —

A D

the homogeneous reaction rates for the initial reactant
A, the intermediate species B and C as well as the prod-
uct D in the a -phase can be written as

b
SR CH-V-(D-VC)+V - (qC,) -
b

(e RpCy) =V - (D-VCp)+V - (4Cp) -
B

S(eRC=V-(D-VC) +V - (4Co) -

B
=(eRpCp) =V (D-VCp)+ V- (4Cp) -

In a generalized form the equation system (10-71) can
be written for species & of the fluid phase f'as

0

S ERCY -V (D VCY+V - (qC)~Q; (10-72)
= &Ry 191G —R8,Cp) k=1,..,N

Notice, in (10-72) it is by  definition
Ry = 9, = Cp=0.

a
RhomA = 7ka (4]

R;'fomg = k,[A]—k,[B] 1070)
R}?omc = kb[B] —kC[C]
ﬁom[, = k[C]

Additionally, we again assume that such a type of con-
secutive reaction is subjected to both the fluid and solid
species k of the reversible heterogeneous reaction
according to (10-51a). In specifying the decay rates
(10-70) in the right-hand term of the governing trans-
port equation (10-48) we find the following set of bal-
ance equations for the four species:

0, = _ngRASACA
Op = &(R,8,C,—NRpSpCy)
(10-71)
Oc = &/(R8,Cy—R9Co)
Op = £M8cCe

It is to be mentioned that the consecutive reactions are
no more a single-species transport process. However,
FEFLOW becomes capable of simulating such type of
multispecies transport equations (10-72) coupled via
the consecutive reaction terms by using a specific inter-
face (IFM) programming module chain. so, where
the equations are consecutively solved for an interme-
diate species k& = 2 (=B) under specific boundary
conditions.



10.5 Summarized equations
and relationships used in

FEFLOW for modeling
reactive transport pro-
cesses

The reactive transport modeling is based on the fol-
lowing transport equation for species k dissolved in the
fluid phase f
0
S(ERCY=V-(D-VCY+V - (4C) -0, (10-73)

= eV 1 T 091G — (Rt 98, G

(k=1,..., Npoge)

where the different reactions types and relationships
are summarized in Table 10.1. The corresponding
material parameters to be input for the reaction and
sorption types are listed in Table 10.2.

Remarks:

(1) The Henry isotherm with an retardation factor of

R, = 1+IT’8k1 (10-74)

if often expressed by the distribution coefficient K, in
the form?

. 1—¢ . ky
‘Rk = 1+Tpst with Kd = ")— (10-75)

N

where p, is the density of solid. An alternative defini-

tion of the distribution coefficient can sometimes be
found as

K
+Pb d

R, =1
k €

(10-76)

where p, = (1-¢)p, is the bulk density of the porous
media (mass dry media per total volume).

(2) Microbiological degradation processes represents
biologically catalyzed reactions® which can be appro-
priately modeled by Monod kinetics. A typical applica-
tion is the oxidation of organic matter by aerobic
bacteria. As long as the dissolved oxygen remains
higher than a critical level the oxidation is unbounded.
Below a critical level, the rate of aerobic respiration
decreases with decreasing O, concentration, and van-
ishes when no O, is left. Thus, the limitation of aero-
bic respiration by O, obeys,

0
Ry = —v _19] (10-77)
5 m](o2 + [02]

where v is the maximum rate and [O,] is the dis-
solved oxygen activity. According to (10-77), when
[0,] « Ko, the availability of oxygen is limiting and
the rate of aerobic respiration exhibits a first-order
dependence on [O,]. When, on the other hand,
[0,]» Ky the aerobic bacteria are functioning at
maximum capacity, that is, they cannot produce more
enzymes to utilize the excess O, .

Monod reaction laws are equivalent to the Michaelis-
Menten mechanism (10-65b) (10-66) with the reaction
rates summed for the fluid and solid phases
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—£ R+ 09 Cp = R C, (10-79)

—e(R, +0,)9"C, = —[ ik Eek Jv C,(10-78)
AN T 9p) 0, G )VmC

+
K,+C, K,+xC
ith 9, = 2
W1 k Km
It is a hyperbolic function that simplifies to a first-order

reaction in C, when C,«K _,1i.e. S L
k koo 16 Such a simplistic first-order reaction ignore the fact

that active microorganisms must be present to catalyze
the reactions.

Table 10.1 Reaction types and relationships

Reaction type . . Modifyin
. . P . Retardation/sorption Decay rate ying
(reversible and irreversible reactions) Niodgel R 9 function
k=1,..., N k k P
exchange reaction with first-order decay
s s < s r 1
e \V i A Ve P l-¢
A, —>P Ry =1+— 9, = const ¢ =0
A, —>P €
. . . . with
exchange reaction with Michaelis-Menten
kinetics 9, = —m
| K Henry Kt 0 C
A A : X~ 1
s < . -
|VA|A2+ ‘v/‘Aj AR ‘v,(|A2+ ‘vj|A; =TT +k1 c Langmuir with 072 -
Ay +ESSEA >PHE 2Ck 1 +=m
Ay +ESSEA >P+E bl Vi = const k
b,Cy Freundlich
K,, = const
exchange reaction with consecutive reaction and
(decay chain)
2 -
, - , i = const Sj_1 = const 91 =0
s s —
|Vk‘A/(+|Y/|Aj - Vit vl 4; ky = const 9, = const 0, = 0
Aé-,lﬁAg‘”P b, = const
A, > A, >P
b, = const
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Table 10.2 Model input parameter for reactive transport

Retardation/sorption Decay
. . first- . . .
Henry Langmuir Freundlich order Michaelis-Menten Decay chain
Symbol k, k, k, b, b, 9, Vi K, S 9,
. -1 1-b -
S I T I e T BT B N O

(3) Nonequilibrium sorption processes can be of
importance for in situ bioremediation of contaminated
aquifers’. Typically, if groundwater extraction is
applied the contaminant concentrations show a rapid
initial decrease followed by a period of a much slower
decrease in concentration. One of the reason is that the
rate of desorption of contaminants from the aquifer sol-
ids to the fluid phase is slow, especially at low concen-
trations. While soil-sorbed contaminants have been
shown to be generally unavailable for bioremediation,
only the contaminant concentration of the fluid phase
can be directly influenced in the remediation process.
When desorption of the contaminant from the solid
phase to the fluid phase becomes slow, the performance
of in situ bioremediation is controlled by the desorption
mechanism. This is called rate-limiting desorption,
which can be described by the following nonequilib-
rium reaction of two different species £ and j

adsorption k;
4l A (10-80)

desorption k,

The heterogeneous reaction rates for the two species ;
and £ in the solid and fluid phases, respectively, are

Fom, = Ful40 4] (1081

_ gt S 4% =
Rhetk - _ka [Ak] Jrka[Aj] - _Rhet/.

Inserting the quotient of the rate constants as the equi-
librium constant, cf. Eq. (10-29)

{ +

= Ky (10-82)

TS

we get

- I S4y _ qdesorp va
Rhet/ - ka(Keq[Ak]f[Aj]) =9 (Keqckicj) (10-83)
Rhet,( = 7Rhetj
where §%%°P = k,y; at y;~y, represents now a first-

order desorption rate coefficient.

The mass transport equations (10-10) for solid and
fluid species are then
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LC

J

L;C

For sake of simplicity, denoting with C = C”,l the fluid
concentration and with S = Cj the sorbed concentra-
tion Eq. (10-84) with (10-5) gives the following set of

0 . ;
a(gss) - SSQ; = ESR;IOIIIS

S0 88)=V - (D-VO) + V- (4O)=,0(~5,0; =

which have to be solved for S and C.
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Remarks on gas flow modeling by using FEFLOW

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

11.1 Basic Flow Equations

Starting point for modeling gas flows in porous
media represents the following fundamental balance
laws?:

Mass conservation (continuity equation)

Lep)+ %(spv,-) = ¢pQ (11-1)

Momentum conservation (Darcy equation)

ki(a
- _fop -
where
¢ = porosity (= volume fraction of gas phase);
p = gasdensity;
v; = vector of pore velocity;
QO = sink/source;
k;; = permeability tensor;
p = dynamic viscosity of gas;

p = gaspressure;
g; = gravitational vector;
=  time,
x; = Cartesian coordinates (Eulerian spatial

coordinate vector);

Let us consider a homogeneous compressible gas the
Darcy equation (11-2) for the gas motion can be simpli-
fied to

ko

_ ij Op

= A 11-
i = “uox, (11-3)

Introducing (11-3) into (11-1) it yields the following
general model equation for the flow of a homogeneous
compressible gas in a porous medium

k.
£+ %8 2 (UREP) g0 (11-4)

o Par o\ oy,

The first two terms of the left-hand side of (11-4) can
be expanded with respect to the pressure p as
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10p o1 of 108\, (22 0 (KuPop) _ s
g(pap)p p(e 6])85 ot 5‘xi(u ax_) epQ(11-5)

P Ny

B, a,
or

op_ 0 (kPap
i = -

plep, +(1-e)a, 15 - ax(uax) epQ  (11-6)
where

B, = gas compressibility;

skeleton (matrix) compressibility;
1 — ¢, volume fraction of solid;

a
P
&5

We introduce the specific storativity Sop @S

Sp = 8Bp+(1 —g)a (11-7)

which is related to pressure changes. Finally the fol-
lowing model equation holds

%0 (5Pop)
Op ot Ox; uﬁxj epQ

pS (11-8)

written for the gas pressure as primary variable to be
determined.

Alternatively, if introducing the piezometric head
(potential) # as®

h=4L1:

11-9
bog (11-9)

where

po = reference density of gas;
g = gravitational acceleration;
elevation above a reference datum.

Since dp/ 0t = pyg(dh/dt) and 6p/0x pog(ah/éx )
the equation (11-8) can be expressed by the piezomet-
ric head variable /4 and leads to

oh 0 ( Ko ah)
Sy, ——=—|K; 11-10
PRS0, ~ ar \KiP Y ox, epQ (11-10)
where
k;.
i fiiPog , tensor of "hydraulic’ conductivity;
Ly Ko
p, = reference viscosity.

Preferring the variable # instead of the pressure p it
is no more convenient to use the pressure-related spe-
cific storativity S, . Instead the compressibility coeffi-
cients can be directly derived by % according to

g - 1o
' poh 11-11

o _ 10oe (H-11)
h g,0h

which are the standard compressibility coefficients
used in FEFLOW?. It becomes clear that the p -based
and the #-based compressibilities are related as (cf-
also Bear and Verruijt', p. 59)



Bh = Pong

o, = P&,

(11-12)

Introducing the % -related specific storativity S,

Son = Byt (1—¢)ay, (11-13)

where we note that

Son = pOgSOp (11-14)
we find from (11-10) the following model equation

oh 6(

5 2 2 (gt
Poong ™ ax\" P ax,

PO, (11-15)

to be solved for the piezometric head # of the gas. In
(11-15) we introduce the bulk sink/source rate 0,
defined as

Q, = &0 (11-16)

which is the sink/source definition? commonly used in
FEFLOW.

11.2 Simplifications

The general equations (11-8) and (11-15) for the
pressure p and the piezometric head # of a gas flow in
the porous media can be simplified for the following
assumptions:

* isothermal gas flow

* constant viscosity u = p,, and

« presence of a thermodynamically ideal gas.

The assumption of an ideal gas holds the following
relationship for the gas density p:

= p 2 (11-17)
p pOpO
where
py = reference density of gas;
p, = reference pressure of gas.

Inserting (11-17) into (11-8) it yields

op_ 0 (kpapy _ ;
pSOPaf axi( u ax) pr (11 18)

Using (11-17) it can be easily shown that

_lop _1 .
B, o p (11-19)

It can be further assumed for a gas flow that the skele-
ton compressibility a,, is much smaller against the gas
compressibility B, , viz.,

'ocp«Bp

Accordingly, we simplify the storativity term by using
(11-19) to

SOp = aﬁp+(l 7s)ap ~ SBP = (11-20)
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and equation (11-18) yields

a_p,i(’ﬂa_p) - (1121

ot Ox; pc’;‘xj

rQ,

which is nonlinear.

An alternative formulation to (11-21) is often used

. . 2 K
by introducing the square pressure p”. Since
p _ 1op~ op _1op i -
paxj 2axj,pat 5L we obtain from (11-21)
2 2
op-_, 0 (kop) _, 2
e paqu o 200, (11-22)

which have to be solved for the square pressure p2 asa
new variable. Consider, however, equation (11-22) is
still nonlinear for transient and sink/source conditions.
Only for a steady-state gas flow and without the sink/
source term O a linear relationship results*

k..op2
i(—’@ﬂ] =0 (11-23)

Ox,\ W ﬁxj

Analogously, the #-based formulations can be easily
derived. On this occasion the piezometric head # can
be simplified for a gas flow as

h=-L+; ~ £ (11-24)
Po&

because the density p, of the gas is significantly
smaller than water. Using (11-24) and (11-17) with
B = o, Sy, ~e/h we obtain from (11-18)

ohY _
Kl.jha—x) = 0,

o
ot Ox;

(11-25)

Otherwise, introducing the square potential n* the
alternative formulation of (11-25) is

on’

on’ 2
€ T —hg;c-i[Kiié};j = 2h Qp (11-26)

which becomes only linear for both steady-state and
divergence-free (without of sink/sources) conditions as
the Laplacian of n* , viz.,

2
0 oh™| _
6xl-[Kif 6xj] =0

11.3 Using FEFLOW for Solving
the Nonlinear and Linear-
ized Gas Flow Equations

(11-27)

FEFLOW? solves balance equations for water flow
which can also be applicable directly to gas flows.
Since FEFLOW prefers the piezometric head variable
h as the primary unknown of the flow we find a direct
analogy of the nonlinear gas flow equation (11-25) to
the depth-integrated flow equations of unconfined
aquifers (c¢f. Egs. (171) to (175) in?). Accordingly, for
2D problems the nonlinear gas model (11-25) can be
directly solved by FEFLOW. On the other hand, under
steady state and without sink/sources equation (11-27)
is linear in 4> and FEFLOW can immediately applied.



Restrictions exist for the general case in solving
(11-25) (or (11-26)). However, it has been shown? a lin-
earization of the gas flow equation is suited for a wide
range of practical applications. In the context of
FEFLOW, we consider a linearized version of the gov-
erning compressible gas equation (11-25) in the form

86h_£( oh
ot Ox;

Tija—x) = hQ, (11-28)

where the product K4 is approximated by the trans-
missivity 7;;, which can be linearized by the reference
potential 4, viz.,

T, = K;h~Kh,. (11-29)

It is often sufficient to approximate the sink/source
expression of (11-28) by

0 = hQ,~hy0, (11-30)

and we finally solve the linearized 4 -based gas flow
equation in the form

oh (. Oh\ _ -
Sat’axi(Tffax) -0 (11-31)

Alternatively, instead of linearizing (11-25) we can also
apply (11-26) to solve the gas flow equation by the W
variable. In doing so, we obtain from (11-26) the fol-
lowing linearized h” -based gas flow equation, viz.,

2 2
Oh 9, onT) _
SEG_XZ-[KUG_XJ =20 (11-32)

where a pseudo-storativity is introduced as

(hy+0) (11-33)

For steady-state flow conditions we can solve either the
h -based form

0 oh\ _ =
_axi(Tl.j 8x) -0 (11-34)
or the A* -based form

2
o, oh’) _ .~
_axi(K’?/axj] =20 (11-35)
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Steady-state linearized Richards equation for fast
solution of unsaturated flow systems (FUSY)

P. Perrochet’& H.-J. G. Diersch®

%Centre d’Hydrogéologie, Université de Neuchdtel, Switzerland
bWASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

12.1 Motivation

It is well-know the solution of the nonlinear Rich-
ards equation for unsaturated flow require an increased
numerical effort and convergence difficulties can occur
at dry conditions’. Considering complex field situa-
tions and large three-dimensional (3D) applications the
computational burden can be extremely high. When
there are only interests in steady-state solutions, e.g.
capillary barrier problems’, the standard approach in
form any time-stepping strategy becomes very circum-
stantial and inefficient. For large and complicated prob-
lems the nonlinearity of the Richards equation
represents serious limitations and solution alternatives
are needed.

12.2 Basic Balance Equations

The mass conservation equation of a fluid in an
unsaturated media is for steady-state conditions (sym-
bols are listed in the Appendix A ’Nomenclature’)

V.gq=0 (12-1)

The fluid motion (fluid momentum balance) is
described by the Darcy equation written in the form

q = K. ()K[Vy +(1+7y)e] (12-2)

Inserting (12-2) into (12-1) the Richards equation for a
steady-state flow results

—VAKK(W[Vy+ (1 +ye]} =0 (12-3)

which has to be solved for y. The steady Richards
equation (12-3) is nonlinear due to the dependence of
the relative hydraulic conductivity K, on the pressure
head . For K,(y) an appropriate constitutive rela-
tionship is required.

12.3 Exponential Law of Rela-
tive Hydraulic Conductiv-

ity

There are different constitutive relationships of the
relative hydraulic conductivity K,(y). Most common
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£ ted to homoge-
neous soils, where the o -
parameter appearing in
exponential law for the rela-
tive conductivity (12-4) is a
constant.
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are the van Genuchten and the Brooks-Corey paramet-
ric models®. An other alternative is the exponential law
in the form

for y<O0

y=>0

K, (y) = {ew (12-4)
1

for

It can be shown that the exponential law (12-4) for the
relative hydraulic conductivity give results similar to
the standard van Genuchten and the Brooks-Corey
parametric models. It is to be emphasized that for
steady-state conditions no assumption is required for
the relationship between pressure head v and satura-
tion s. In this context, the y -values can be trans-
formed into saturations using any curve, like for
example the van Genuchten relationship. Accordingly,
mixed parametric models can be a promising alterna-
tive for solving complex unsaturated flow problems
under steady-state conditions, where for example the
exponential law is used for K,(y) and the van Genu-
chten law is used to find the saturations s(vy) .

12.4 Transformation of the
Steady-state Richards
Equation

Introducing the following Kirchhoff integral trans-
form related to the relative hydraulic conductivity in
the form

\J
F(y) = jK,(r)dr

—00

(12-5)

one gets with the exponential law (12-4)

v
F(y) = Iewd‘c = €

—00

(x‘r|w oy

K,(y) (12-6)

QI—

From (12-6) it follows

VF = "'Vy = K.(y)Vy (12-7)

and

K,(y) = aF (12-8)

Important note: The expression (12-7) is only valid if
assuming a constant o -parameter. This restricts the
FUSY approach to problems with unsaturated parame-
ters o being spatially invariable.

Taking the Richards equation (12-3)

VK- K(W)Vy +K- K(y) (1+y)e| =0 (12-9)

VF aF

the transformation leads to a steady-state advection-
diffusion equation in the form

V. (K-VF-vF) = Q (12-10)

for

(12-11)

reo.l)



with the advective velocity vector

v=—oK-(1+y)e (12-12)

Notice, the advection-diffusion equation (12-10) is /in-
ear in F and represents a divergence-form type'.

The solution of such a type of linear advection-dif-
fusion equation, in form of a steady-state linearized
Richards equation, can be performed very efficiently
and fast by using standard techniques. It is denoted by
the acronym FUSY (fast solution of unsaturated flow
systems).

After solving (12-10) for F in the domain Q and
for given boundary conditions on dQ the pressure head
vy can be simply obtained. Since

afF =™V (12-13)
and
In(aF) = ay (12-14)
one uses
1
y = aln(ocF) (12-15)

for the retransformation. As soon as y is known the
saturation s can be determined from any s(y) curve.
Additionally, the hydraulic head (potential) # is given
by

h=wy+tz= éln(aF)-&-z (12-16)

and the resulting Darcy fluxes ¢ are computed by

q = -K.(y)K(Vh+ye) (12-17)

NS
oy

e

12.5 Boundary Conditions

For the domain Q boundary conditions (BC) are
imposed on the four disjoint portions of the total
boundary 0Q:

0Q = T, Ul,UT;UT, (12-18a)

with

r,=riur} (12-18b)

12.5.1 Untransformed conditions

For the untransformed Richards-type model equa-
tion (12-3) boundary conditions are prescribed by the
following types?:

Dirichlet 1st kind BC for hydraulic head

h=h, on r, (12-19)

Neumann flux-type 2nd kind BC

a

q, = [K.(w)K-(Vh+ye)]-n on r, (12-20)
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Neumann gradient-type 2nd kind BC
(a special type for a free drainage at diminishing pres-
sure gradient Vy =~ 0)

b

g, = -[K-(1+)el-m o T3 (12:21)
Cauchy 3rd kind BC
q, = ~©(hy—h) on [y (12-22)

Seepage face BC's
(represents a flux-constrained Dirichlet boundary-value
problem)

h =z

v =20
(flux is going outward)

at q,>0 (12-23)

on r,

12.5.2 Transformed conditions

Boundary conditions for the governing advection-
diffusion equation (12-10) can be equivalently found
for (12-19), (12-20), (12-21), (12-22) and (12-23) when
written by the new F variable:

Dirichlet 1st kind BC for hydraulic head

1 a(h-2)
—e

F = on T, (12-24)

Neumann flux-type 2nd kind BC

q9, = | K- K, (y)Vy +K- Kr(\lf)(l +y)e|-n (12-25)
VF aF

a

= —(K-VF-vF)-n on r,

Neumann gradient-type 2nd kind BC
(free drainage at diminishing pressure gradient, i.e.,
Vy = VF=~0)

b
4, = - [K-(1+y)e] -n= i mon T, (12-26)
— =
-v/a

Cauchy 3rd kind BC

g, = ~®(hy—h) = —@[hz—z—éln((xF)J (12-27)

on I
which represents a nonlinear expression in F .
Seepage face BC's
1
F= - at q,>0 (12-28)

(flux is going outward) on
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Appendix A

Nomenclature

In the above the symbols have the following meaning:

Latin symbols

hy,hy =

K.(s) =

qn =

s(y) =

gravitational unit vector, (1) ;
transform function, (L) ;

y+z, hydraulic (piezometric)
head, (L);

prescribed boundary values for 7,
(L)

relative  hydraulic  conductivity
(0<K,<1, K, =1 ifsaturated at
s =1),(1);

tensor of hydraulic conductivity for
the saturated medium (anisotropy),
LT );

normal unit vector (positive
outward);

fluid mass sink/source, (7' 71) ;
Darcy flux vector, (LT _1) ;

normal flux on a boundary (directed
positive outward), (LT ol );
saturation, (0<s<1, s=1 if
medium is saturated), (1) ;

D <
]

Subscripts
e
i,j, k
o

Superscripts

elevation above a reference datum,
(L);

. . ~1
advective velocity vector, (T ') ;

sorptive number, (Lil) ;

boundary;

total boundary;

porosity (= volume fraction of fluid
phase), (1);

integration variable, (L) ;

transfer coefficient, (7 ! )

buoyancy coefficient including fluid
density effects, (1) ;

pressure head (L) ;
domain;

Nabla (vector) operator, (L_l) ;

elemental,
nodal or spatial indices;

reference value;

fluid (water) phase;
solid phase;
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The Petrov-Galerkin least square method (PGLS)

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

13.1 Introduction

Both in solving the nonlinear Richards equation and
the advective-dispersive transport equations for mass
and heat the advective part often becomes dominant
and classic numerical techniques can completely fail.
Conventionally, for multi-dimensional transport prob-
lems upwind techniques such as streamline-upwind
Petrov-Galerkin (SUPG) or scalar upstream weighting
are standard to stabilize the solutions. While the classic
artificial diffusion method often suffers in a consider-
able smearing of steep fronts the SUPG formulation
cannot preclude the presence of overshoots and under-
shoots in the vicinity of sharp gradients'. More
recently, nonlinear shock-capturing techniques have
been developed and successfully applied®. Otherwise,
for unsaturated problems upstream weighting tech-
niques can be helpful to damp out wiggles in the satu-
ration profiles’. Unfortunately, most of these
established techniques reveal over-diffusive properties
and there is a further demand for alternative higher-
order upwind techniques with reduced spurious numer-
ical dispersion.

The Petrov-Galerkin least square (PGLS) finite-ele-
ment method appears as a promising technique for
tackling advective-dominant flow and transport pro-
cesses at variably saturated conditions. Basic work of
the PGLS was presented by Nguyen and Reynen's. In
the context of the finite-element method (FEM) is
based on a Petrov-Galerkin weak formulation where a
’modified” weighting function is derived from the
least-squares finite element concept. This procedure is
equivalent to the methods developed by Hughes and
Brooks'? and by Kelly et al.'> where an artificial diffu-
sion is added to the physical parameter. However, in
this method the artificial diffusion can be derived
directly from the least-squares finite element concept
and requires no ’free’ parameter. PGLS is recognized
as a member of more general stabilized finite element
methods as described by Codina’.
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13.2The PGLS Approach Based
on a Symmetric Stream-
line Stabilization (5$3) via
an Operator Splitting
Technique

13.2.1 Operator split

Rather independently, a more general solution
approach which is comparable to the PGLS technique
as proposed by Nguyen and Reynen!> has been devel-
oped by Konig!? and Wendland'®. Konig'® used the
operator split (OS) technique to solve the transport
equations in a two-pass strategy, where the separate
equations for the diffusive and the advective part are
solved successively. Wendland'® enhanced the OS tech-
nique by introducing a powerful one-pass approach
termed as symmetric streamline stabilization (S3),
where the diffusive and advective parts are re-assem-
bled in one symmetric matrix system. A detailed dis-
cussion of the S3 approach can be found in
Wendland'®. In contrast to Nguyen and Reynen’s PGLS
strategy'> the S3 strategy provides a more generalized
approach with respect to temporal discretization tech-
niques, where different time stepping schemes, includ-
ing adaptive predictor-corrector strategies typically
used in FEFLOW* can be easily covered.

Let us start with the following mass transport equa-
tion

(e+x)C+ev-VC-V-(D-VC)+ AC =f  (13-1)

where ¢ is the porosity, x is the adsorption, v is the
pore velocity vector, D is the ’diffusion’ tensor, A is

the reaction and f is a sink/source term,

which can be written in the operator-splitted form

(e+x)CH(L+Ly)C = f (13-2)
Ere)
Rd
with
Ly =-V-(D-V)+A (13-3a)
L,=¢v-V (13-3b)

Consider the solution C(¢) within the finite time
interval (z,,1,+At,), where At, denotes the variable
timestep length and » indicates the time plane. The
unknown function C(¢) is defined as

"= @) (13-4)

at the old time plane, and

n+1

"= @, +Ary) (13-5)

at the new time plane. Furthermore, we introduce a
time weighting factor (0 <0< 1) in such a form

n+60

C(t,+0At) = 0C(t, + At,) +(1-0)C(t,)
\ } (13-6)
V=0 +(1-0)"

In specifying 6 we obtain different time discretization
schemes, viz.,



0=20 explicit scheme
0 = 1/2 trapezoid rule (13-7)
6 =1 implicit scheme

Practically, from reasons of numerical stability we
are only interested in semi-implicit and fully implicit
schemes that means 1/2<0<1.

The time derivatives are given as

n+1 n
ARG L S O (13-8)
Az,

for the backward Euler (BE) fully implicit scheme and

Cl’l+1 _ Ait(anrl

n

-h-¢" (13-9)

for the trapezoid rule (TR) scheme. The TR expression
can simplified if using a forward difference approxima-

tion for ¢" = ("' - "y At, which leads to the same

expression of Eq. (13-8) for Ch “! Which is used for the
2nd order accurate Crank-Nicolson approximation.

Now, we split the solution C into the diffusive and
the advective part such that

C=C+C, (13-10)

and

eC1+kC+L,C=f (13-11)

represents the diffusive system while

e(C-C)+L,C =0 (13-12)

is the purely advective system. Summing (13-11) and
(13-12) we realize the original balance equation (13-2).
The idea of the operator splitting technique is in
approximating the diffusive and advective equations
(13-11) and (13-12), respectively, in a separate manner.
After that the total discrete balance equation is
obtained by the assembly of these two parts. In doing
this, we assume that the initial conditions for the diffu-
sive and advective variables are

Cy =0 ¢y =0 (13-13)

It is to be noted that the diffusive solution C, can be
considered as an intermediate solution which repre-
sents a temporally discrete interpolation between the
old and the new time level as evidenced in Fig. 13.1.

Ll,Lzﬂ

.y
T

mMO e t

Figure 13.1 Temporally discrete interpolation of the
intermediate solution C .
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13.2.2 Approximation of the diffusive
part

In the context of the FEM the unknown variables
C, C, are replaced by a continuous approximation that
assumes the separability of space and time, thus

Clx, )= TN () C/(0)
! (13-14)
Cy(x; 1) = TN (x)Cy (1)
1

where the subscript I = 1, ..., M denotes the nodal indi-
cesand i = I, ..., D, D €(2,3) represents the spatial
indices.

For the diffusive part the standard Galerkin approxi-
mation is used. Thus, the residual ® of Eq. (13-11) as

R =eC+xC+L,C-f (13-15)
yields the following weak formulation
[NRdQ =0

@ (13-16)

jN,(eCl +KkC+L,C—f)dQ = 0
Q

Using the trial space expression (13-14) the following
global matrix system results

M-C +S-C+B-C=P (13-17)

with its components written in indicial notation

My = [eNN,dQ (13-18a)

Q
Sy = [xNNdQ (13-18b)

Q

(0N, 0N,
B, = a—XiDija—xde+IkNlNJdQ (13-18c¢)

Q ’ Q

P = [NfdQ~[Nyg.dr (13-18d)

Q r

where the subscripts 7,J = I, ..., M denote the nodal
indices and i,j = 1, ..., D represent the spatial indices.
Furthermore, ¢, corresponds to the outer diffusive flux
on the boundary T".

The time discretization of Eq. (13-17) leads to the
following expression

mM.¢ s s GO
+B-Ci=P""°

(13-19)

With (13-13) we get the solution of the intermediate
(diffusive) part C; at the new time plane n+1 as

+1
(M+S)-[C7A—ICJ,]+OB-C’1'H

7+ 0

(13-20)

+(1-0)B-C" =P



or

[%wﬂc’{” (13-21)

n

_ [(M+S)

7+ 0

At

n

—(1—6)B}C"+P

For the predictor-corrector strategy based on the BE
and TR schemes we obtain alternatively

G(M+S) n+1
[—At +BJC1 (13-22)

n

= (M+S)-[A%C"+(ofl)éq+P"H

with

(13-23)

N =

13.2.3 Approximation of the advective
part

The residual of the advective part (13-12) in form of

I =¢e(C-C))+L,C }
(13-24)

=g(C-C))+ev-VC

L2
|

will be handled by the least-square method

= I(S-S)dﬂ =0 (13-25)

This is equivalent to the minimization process in using
the weighting (test) function in form of

o3 _ &N;
= = = L4 . -
\ ac, A Oev - VN, (13-26)

n

for the 0 -based time marching schemes and

93 ceN;

n

+ev- VN, (13-27)

for the BE and TR predictor-corrector approximations.

The weak formulation yields

jw,SdQ =0 (13-28)
Q

and is exemplified for the 6-based time marching
scheme as

[N+ 0At,y - YN)[e(C - 1) +v- VCIQ = 0 (13-29)
Q

where the residual is weighted by the test function con-
sisting of two parts as displayed in Fig. 13.2.
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A =
]

N, 0At,v- VN, LS upwind weighting

Figure 13.2 Least-square test function of the operator split
(modified from !3),

The least-square weak statement (13-29) leads to
the following matrix system

(M+0A1,V)-C+(K+0T)-C (13-30)
= (M+0A1,V)-C

with the components

V= Js(v~VN[)NJdQ (13-31a)
Q
K, = JgNI(,,.VNJ)dQ (13-31b)
Q
T, - JA,ng(v.vNI).(wvzvj)dQ (13-31¢)
Q

Analogously, for the BE and TR predictor-corrector
technique we have to apply

j(cN,+ At,y-VN)[e(C—C))+ev-VCIdQ = 0 (13-32)
Q
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or with (13-23)

[N+ 042,y - VN)[e(C~Cp) +v- VCIdQ = 0 (13-33)
Q

which is the same as for 6-based time marching

scheme which gives the matrix system (13-30).

The time discretization of Eq. (13-30) leads to the
following expression

M+0arv)-C" v (K+om) " ° (13-34)
- M+oarVy-C°

We get the solution of the advective part at the new
time plane n+1 as

n+1 n
(M+9At,,V)-[C A;C]+9(K+6D»C"”+(l76)(K+6T)»C" =
! (13-35)
i+ 1
- (M+6Ath)~[Cl A;an
and finally
[AMI+9(V+K+ 9T)}C"+1 (13-36)
- (%+6V)C’f“—(l—6)(K+6T)-C"

Regarding the predictor-corrector strategy based on
the BE and TR schemes if taking



¢l = Ait(c””fc”)f(cfl)c'”
o ! o . (13-37)
G = - (e- 1

and using (13-30) we obtain alternatively for the
advective part the following matrix system

(%nﬂ Vek+iT)c"! - (%nh Vet s

13.2.4 Assembly of the diffusive and
advective parts

Finally, to obtain the matrix system for the total bal-
ance equation (13-1) we have to add the diffusive and
advective parts.

For the 0 -based time marching scheme the summation
of (13-36) and (13-21) yields
M 1 [(M+S) il
[Zz—,,Jr e(V+K+eT)}C" + [———Atn +GBJC’] —(13 )
- (AMQWV)C’;H*“ —0)(K+0T)- C”+[%AZ§7<| 76)BJC”+P'”0

The term %c’f” can be eliminated from (13-39). The
remainin% térms correlated with the intermediate solu-
tion C; " can be transformed in the following way!s.
All terms with C} ! on the left-hand side are replaced
by C" o , while such terms on the right-hand side are
substituted by C". In doing so, the following matrix
system results

[(-MA-}‘S)+9(B+ V+K+6T)}C"H -
M” (13-40)
- [(A—js)f(l76)(B+K+6T)+6V}C"+P”+e
or
() +1
[A_t OB+ VK + er)JC” (13-41)
n
o0 n n+0
- [5—(1-9)(3+K+9T)+9VJC P
with
Oy = [RNN O
Q
oN, oN,
B, = jgolygmﬁw]}vjdg
o ! J Q
vV, = I(q~VN1)NJdQ
@ (13-42)

Ky = [Nfq-VN)dQ
Q

At
Ty = [*(a-VN) - (q- VN)dO

Q
Py = [NfdQ~[N,g dr
Q r

where R; = ¢+« is the retardation factor and ¢ = ev
is the Darcy velocity vector.

Analogously for the BE and TR predictor-corrector
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schemes we add (13-38) and (13-22)

(5

+ V+K+1T)C"” +[M
-\ G At

+B}C’l’+] =
" (13-43)

= (G—W—I+V)C'f”+(M+S)-[£—C"+(cfI)C‘"}P””

At,

which gives

[%+B+ V+K+(1—ST}C"+1

n

o 7 o M _ ;
- v +0.[Atnc +(o l)C"}rP

(13-44)

n+ 0

The final matrix systems (13-41) and (13-44) for the
0 -based time marching scheme and the BE and TR
predictor-corrector scheme, respectively, are symmet-
ric and positive definite. This results from the fact that
the advective matrices V' and K form a symmetric
contribution as the sum (V+K) because K = Vi is
the transpose as easily seen from (13-42). The symmet-
ric term 7' can be interpreted as an additional term of
artificial diffusion. This naturally arises from the least-
square weighting procedure (13-25).

13.2.5 Remarks on the application of
operator split to the divergence form
of the transport equation

FEFLOW* differs between the convective and the
divergence forms in solving the governing transport
equations. The advantage of the divergence form is in
prescribing a total (advective plus diffusive) boundary
flux on T instead of imposing only the diffusive flux
g, (cf. Eq. (13-18d) on the boundary I' . The balance

equation (13-1) represents a convective form which is
standard, where the continuity equation is explicitly
used to find a gradient-type relationship ev - VC for the
advective term. But basically, the balance equation pos-
sesses a divergence expression V - (gvC) . It reads

(e+K)C+V-(evC)-V-(D-VCO)+ LC = f (13-45)

Then, the splitted advective part yields

e(C-C)+L,C=0 (13-46)
with the advective operator
Ly =8v-V+(V-ev) (13-47)

The weak statement of the least-square weighting
method is then

I[N1+ emnév - (st,)}[s(Cf CH+V-(evO)da = 0 (13-48)
o
which leads to the following matrix system
(M+0A1,V*)- C+(K*+0T*)- C (13-49)
= (M+06A1,V*)-C,
with the components
(13-50a)

V= Ig(‘, - VNpN,dQ + ININJV - (ev)dQ
Q Q



K, * = {stJ- VN,dQ+jN,qjdr (13-50b)
Q r

1= | Atni[v-(st,)]~[V-(8VNJ)]dQ (13-50¢)
Q

where we transformed the partial advective matrix
K, * by using the divergence theorem according to

jN,V(st)dQ = jv(N,svc)dQ (13-51)
Q Q
— [evC-VNdQ = [Ngidr - [evC- VN dQ

Q r Q

to get the required description of the advective outer
border flux g .

The time discretization of (13-49) for the diver-
gence form of the splitted advective part yields finally

[Aﬁt OV + K* + eT*)JC"H (13-52)
- (—A—A;l-JrGV*)CTH—(l _0)(K*+0T")- C"

Inspecting Eq. (13-52) with its matrix components (13-
50a) to (13-50c) it reveals the following. The symmet-
ric property of the matrix system is lost because K* is
no more a transpose of F* . Furthermore, the evalua-
tion of the divergence expressions V - (¢v) in (13-50a)
and V- (evN)) in (13-50c) causes difficulties if the
flow is not solenoidal (divergence-free) at the presence
of compression and sink/sources of fluid. As the sum, it
becomes apparent that the least-square technique is

rather inappropriate for the divergence form of the
transport equation.

13.3 Integration of PGLS into
the FEFLOW Simulation
Package

13.3.1 General

In FEFLOW various numerical schemes are avail-
able for flow and transport processes in variably satu-
rated media. Regarding the 2D and 3D transport
equations for solute and heat it covers:

(1) GFEM-Bubnov-Galerkin FEM (GFEM)
(2) SU-Petrov-Galerkin streamline upwind
(3) FU-Full upwind technique

(4) SC-Shock-capturing technique.

With respect to the unsaturated flow equations in
two and three dimensions FEFLOW is currently capa-
ble of performing

e Standard h-based Richards equation form via
either Picard or Newton iteration;

*Mixed y-s-based Richards equation by using
either a modified Picard scheme or the Newton
method;

* Primary variable switching technique with a full
Newton method;

* Upstream weighting based on a Gauss-point-
related evaluation technique for the relative con-
ductivity.
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The PGLS scheme for both transport and unsaturated
flow processes has been developed and implemented as
the fifth option of numerical schemes in FEFLOW, viz.,

(5) PGLS-Petrov-Galerkin least square method.

The main advantages of the PGLS can be summarized
as follows:

« It is compatible to the existing techniques within
the finite element context.

« It represents a higher-order upwind scheme pro-
viding an improved temporal and spatial accuracy.

* The scheme provides a built-in upwind character-
istics; accordingly, no additional ’free’ parameters
have to be specified by the user.

« It leads to symmetric matrix systems, which can
be solved effectively and fast. Compared to the
conventional unsymmetric approaches the PGLS
is a cost-effective variant with a significantly
reduced storage demand.

«It can be simply applied both to the transport
equations and to the unsaturated flow equations.

13.3.2 Resumé of basic equations

The following nonlinear system is solved in two and
three dimensions (symbols are listed in Appendix A):

S s+ EW Ly - o (13-53)
0 o o
p-p,
q = —Kr(S)KfH[VW + (1 + p—n) ej| (13-54)
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oC
S(WER,(O)55 +4-VC

~ V- [(es(y)D I+ D) -VC]

+s(WeR(C)S + 0,1C = s(v)Q¢

s s,.0T f

[s(\u)epc +(1-¢g)p'c ]l +pcq VT

ot
~ V- [(A+(1-e)A'T)- VT]

+pd O(T-T,) = 04(v)

(13-55)

(13-56)

with the definitions and constitutive relationships

h=-L+z= y+z
Pog

S, = ey +(1-e)

K:kpog
Ho
__Ho
T e

p = pll+a(C-C)-B(T-T,)]
R(C) = 1+1=8) 8) 2(C)
_ d *8)3[X(C)'C]
RC) = 1+15 =

= (BL ﬁT) ” ] T||q||1

A= pch + ss(\u)kfl

(13-57a)

(13-57b)

(13-57¢)

(13-57d)

(13-57¢)

(13-57f)

(13-57g)

(13-57h)



0/(v) = s(w)eQr+(1-£)0 (13-57i)

To solve the nonlinear equations (13-53) to (13-56)
for v, s, ¢, C, and T under unsaturated-saturated
conditions constitutive relationships are additionally
required for the saturation s as a function of the pres-
sure (capillary) head vy, with its inverse, the pressure
head v as a function of the saturation s, and for the
relative hydraulic conductivity K, as a function of the
pressure head y or the saturation s. FEFLOW pro-
vides the van Genuchten-Mualem, the Brooks-Corey,
the Haverkamp, the exponential and the linear paramet-
ric models.

The above equations (13-53) to (13-56) are dis-
cretized by the FEM using bilinear or biquadratic ele-
ments for 2D, and prismatic pentahedral trilinear or

hexahedral trilinear and triquadratic elements for 3D
(Fig. 13.3).

2D 3D

RIBT
Gy

Figure 13.3 FEFLOW’s element types.

Finally, it yields the following coupled matrix system:

Oh+S(h,C,T)h = F(h,q,C,C, T, T)
Aq = B(h,C,T)
P(C)C+D(q,C)C = R(C)

UT+L(q, T)T = W(T)

(13-58)

where h = h(vy,s), ¢, C and T represent the resulting
vectors of nodal hydraulic head (alternatively, pressure
head or saturation), Darcy fluxes, contaminant concen-
tration and temperature, respectively. The superposed
dot means differentiation with respect to time ¢. The
matrices S, A, O, P and U are symmetric and sparse,
while the sparse D and L matrices are only symmetric
for the PGLS scheme. The remaining vectors F, B, R
and W encompass the right-hand sides (RHS) of eqns
(13-53) to (13-56), respectively. The main functional
dependence is shown in parenthesis.

REMARK 1. The matrices D and L are unsymmetric for
the standard schemes such as Bubnov-Galerkin
(GFEM), streamline upwinding (SUPG) and shock
capturing (SC). The matrix § also becomes unsymmet-
ric for the primary variable switching technique®
applied to unsaturated flow problems based on the
Newton iteration technique.

The most remarkable features of the PGLS scheme

applied to the system (13-58) are summarized for the
mass transport equation as follows:
In using the different time discretization schemes in
form of both (a) the 6 -weighted time marching with
fixed step sizes and (b) the predictor-corrector time
stepping of first and second order in time the matrix
equation
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P(C)C+D(q,C)C = R(C) (13-59)

leads to the temporally discretized matrix relationship
for the 0 -weighted scheme as

[Ai;+e(3+ ViK+ SG)}C"H (13-60)
- [AL;7(179)()3+K+6G)+6)V}C"+R"+e
and for the predictor-corrector scheme as
P giyvik+lc)|c (13-61)
At, c
= VC”+P-[f;—C”wL(cs—1)C""J+R”+1
with
G = é ez% (13-62)

The individual matrices for the PGLS scheme of (13-
60) and (13-61) are given by

Ppy = [SWRNN O
Q
By = [VN;- {[es(w)Dyd; + D]- VN, }dQ
Q
+ [[s(WR(O)9 + 0, IN;N 02
Q
Vi, = [(a- VN)NdQ
Q

(13-63)

K, = jN,(q -VN,)dQ

Q
At,
G,y = Igs(\u)("'VNf) -(g- VN,)dQ
Q
R, = [Ns(w)Qcd~[Nyg dr
Q I

REMARK 2. The PGLS damping matrix G in (13-63) is
strongly related to the pore velocity ¢/[es(y)] . For dry
unsaturated problems with s(y)— 0 the matrix G
becomes singular.

REMARK 3. The used time marching schemes are sec-
ond order accurate in time for 6 = 1/2 (Crank Nicol-
son scheme) and o = 2 (Adams-Bashforth AB/TR
predictor-corrector). They have a first order accuracy
for 6 = 1 (fully implicit scheme) and ¢ = 1 (forward
Euler/backward Euler FE/BE predictor-corrector).

REMARK 4. The PGLS symmetrization is caused by
the fact that the advective matrices V' and K form a
symmetric contribution as the sum (V+ K) because
K = V' is the transpose. This is only attainable for a
transport equation which has been written in the so-



called convective form'. Divergence forms of transport
equations cannot by handled by the PGLS scheme as
derived in Section 13.2.5.

REMARK 5. The right-hand side of the matrix system
(13-60) or (13-61) requires the assembly of the advec-
tive matrix ¥ which is unsymmetric. As the conse-
quence, quadrature rules common in the FEM to build
up the element matrices have to be performed over all
rows and columns of the submatrices, at least for the
submatrix V.

REMARK 6. A comparison of the streamline upwind
Petrov-Galerkin (SUPG) scheme with the PGLS tech-
nique leads to the following: The ’balancing tensor dif-
fusivity’ of the SUPG is expressed by the streamline
upwind term

[vw,. (B““‘“i”%q : VNJ)dQ (13-64)
Q

where ™" is the numerical (longitudinal) dispersivity
as a free parameter which can be estimated as Al/2
and Al/4 for linear and quadratic finite elements,
respectively. If comparing (13-64) of the SUPG with
the PGLS damping matrix G in (13-63) it is obvious
that both forms of the upwinding terms become identi-
cal if we set

Bnum Atn
L~ 13-65
Tl ~ &5 0w) (13-63)

1. see Chapter 6: About the difference between the con-
vective form and the divergence form of the transport equa-
tion, p. 121 and following.

It reveals the upwind characteristic of the PGLS is
quite similar to a streamline upwind technique. We
note an equivalent damping parameter p"" for the
PGLS becomes dependent on the time step size and the
measure of the pore velocity according to Az, |v] .

13.4 Benchmarks

13.4.1 Two-dimensional advective-
dominant transport at a grid-parallel
flow

This example has been introduced by Wendland'® to
compare the symmetric streamline stabilization
(termed as S3-scheme) to analytical results, to the oper-
ator split technique proposed by Konig!? (termed as
OS-scheme) and to the symmetric scheme developed
by Leismann and Frind'* (termed as L-scheme), which
handles the advective term explicitly. The problem is
described in Fig. 13.4.

Introducing the grid Peclet number Pg as

pg - bl

5 (13-66)
and the Courant number Co as
_ lAe
Co = =5 (13-67)

we study three cases as listed in Table 13.1. Wend-
land’s results'® for the case 1 are presented in Fig 13.5.
The results of the present PGLS scheme compared with
the standard Galerkin-FEM and the Crank-Nicolson
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time stepping scheme are displayed in Fig. 13.6 for the
case 1. As seen in Figs. 13.5 and 13.6 there are no

remarkable differences between the different schemes
and in comparison with the exact (analytical) solution.

40m

100m
Figure 13.4 The 2D advection-dispersion problem with grid-parallel flow (from'$).

Table 13.1 Simulation parameter used 2D advection-dispersion problem at grid-parallel flow

At Ax A P Co
Cae || e | e | | :
1 1.0 2.0 0.2 2.0 2.0 1.0 0.5
2 2.0 0.02 0.002 2.0 2.0 100.0 1.0
3 2.0 0.02 0.002 0.5 0.5 25.0 4.0




Analytisch

Figure 13.5 Distribution of concentration at 50 s computed
by Wendland!® for the case 1.

a) 2

20

0 20 40 60 80 100

Figure 13.6 Distribution of concentration at 50 s com-
puted by a) the PGLS and b) the standard Galerkin-FEM
for the case 1 with using the Crank-Nicolson time step-
ping scheme 6 = 1/2.

The case 2 represents an advective-dominant prob-
lem with a high grid-Peclet number of 100. Wendland'®
found the solutions as shown in Fig. 13.7. As seen its
results are not satisfactory compared to the analytical
solution. The L- and the OS-schemes reveal both oscil-
latory and overdiffusive solutions. Even false cross-
damping effects are apparent. Wendland’s S3-solutions
improve the situation somewhat (see Fig. 13.7), how-
ever, wiggles and numerical dispersion effects, obvi-
ously due to the fully implicit approximation, appear.

The present PGLS strategy obtains better solutions
which are exhibited in Fig. 13.8. The PGLS with the
Crank-Nicolson scheme (Fig. 13.8a) echoes the best-
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sharpest solutions compared to the implicit PGLS (Fig.
13.8b) and the standard SUPG with Crank-Nicolson
(Fig. 13.8c). However, the concentration distribution
for the Crank-Nicolson PGLS is not completely wig-
gle-free (Fig. 13.8a). On the positive side, unlike the L-
and the OS-strategies the present schemes do not suffer
from spurious cross-dispersion effects.

Analytisch

S3

0S

Figure 13.7 Distribution of concentration at 50 s computed
by Wendland'® for the case 2.



a)

0 20 40 ) %0 100

Figure 13.8 Distribution of concentration at 50 s com-
puted by a) the PGLS with the Crank-Nicolson scheme,
b) PGLS scheme with the fully implicit time marching,
and c) the standard streamline upwind (SUPG) with the
Crank-Nicolson scheme for the case 2.

The case 3 covers solutions of a refined grid. Wend-
land’s results!® are shown in Fig. 13.9. A certain reduc-
tion of the influence of numerical dispersion could be
achieved (cf. Figs. 13.9 and 13.5). The results of the
present PGLS technique are displayed in Fig. 13.10 for

the case 3. For the Crank-Nicolson PGLS (Fig. 13.10a)
wiggles in the concentration distribution are revealed.
On the other hand, a fully implicit PGLS (Fig. 13.10b)
becomes free of oscillations, but, smearing of the con-
centration indicates false numerical dispersion which is
mainly caused by the implicit technique of first order
accuracy in time. Unlike this, the standard SUPG tech-
nique with a Crank-Nicolson obtains reasonable results
without any wiggles and an acceptable amount of
damping (Fig. 13.10c).
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Figure 13.10 Distribution of concentration at 50 s com-
puted by a) the PGLS with the Crank-Nicolson scheme,
b) PGLS scheme with the fully implicit time marching,
A and c) the standard streamline upwind (SUPG) with the
Crank-Nicolson scheme for the case 3.
L

Figure 13.9 Distribution of concentration at 50 s computed
by Wendland'® for the case 3.
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13.4.2 Two-dimensional advective-
dominant transport at an oblique flow

To benchmark the PGLS technique for more general
(non-parallel) flow conditions we consider the example
which was also studied by Wendland'®. The problem is
described in Fig 13.11. With the flow boundary condi-
tions an oblique flow in induced in the domain. The
conductivity is assumed to K = 10> m/s. Two different
cases are considered as listed in Table 13.1.

32m

40m

Figure 13.11 The 2D advection-dispersion problem with
oblique flow (from'®).

Wendland’s results'® for the case 4 are shown in Fig.
13.12, where the standard Ritz-Galerkin method
(termed as RG), the symmetric streamline stabilization
(termed as S3-scheme), the operator split technique
(termed as OS-scheme) and the symmetric scheme
developed by Leismann and Frind" (termed as L-
scheme) are presented. As seen in Fig. 13.12 Wend-

land’s results are rather mixed. Compared to the more
accurate RG scheme its S3 solutions reveal an
increased amount of numerical dispersion. The OS and
L schemes are also depart from the RG results. We
compare these results with our findings as shown in
Fig. 13.13. There, we display three PGLS applications:
one is the Crank-Nicolson PGLS using 20 time steps
(Fig. 13.13a), the other is a fully implicit PGLS realiza-
tion (Fig. 13.13b) and the third is the use of the adap-
tive AB/TR predictor-corrector PGLS (Fig. 13.13c)
with 25 varying time steps. Since there is no analytical
solution for the present problem we run the standard
Galerkin-FEM with the AB/TR scheme on a dense
mesh (25,921 nodes) as depicted in Fig. 13.13d. The
agreement of the present PGLS results is quite well and
provides better solutions as such found by Wendland'®
(cf. Fig. 13.12 and Fig. 13.13a-c with Fig. 13.13d).

Table 13.2 Simulation parameter used 2D advection-
dispersion problem at oblique flow

At | By | Br | Ax | Ay | Pg | Co
[s] | [m] | [m] | [m] | [m]

Case

4 2.0 2.0 0.2 2.0 2.0 1.0 1.5

1.0 0.02 | 0.002 | 2.0 2.0 100.0 | 0.75

FEFLOW | 245



Pe=1.0
0=2.0m v=15m/s

Co=15
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Figure 13.12 Distribution of concentration at 40 s com-

puted by Wendland'® for the case 4.
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d)

1
30 40

Figure 13.13 Distribution of concentration at 40 s com-
puted by a) the Crank-Nicolson PGLS, b) fully implicit
PGLS, c¢) AB/TR PGLS (25 adaptive predictor-corrector
steps, RMS error = 1073) and d) the standard Galerkin-
FEM with AB/TR predictor-corrector scheme applied to a
dense mesh consisting of 25,921 nodes for the case 4.



Pe=100.0 Co=0.75
=0.02m v=15m/s Al=2.0m At = 1.0s

Figure 13.14 Distribution of concentration at 40 s com-
puted by Wendland'® for the case 5.

<) d)
20 1 1 1 20 I 1 1
0 10 20 30 40 0 10 20 30 40

Figure 13.15 Distribution of concentration at 40 s com-
puted by a) the Crank-Nicolson PGLS, b) fully implicit
PGLS, c¢) Crank-Nicolson SUPG and d) the standard Galer-
kin-FEM with FE/BE predictor-corrector scheme applied to
a dense mesh consisting of 25,921 nodes for the case 5.

The case 5 possesses very strong advection at a
large grid Peclet number of Pg = 100. According to the
formulation of the boundary-value problem the intrud-
ing amount of mass at the boundary is a function of the
transverse dispersivity B, . If holding small a very
sharp boundary layer will be formed. It is to be
expected, at coarse meshes false numerical dispersion
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increases artificially the boundary layer which leads to
an unphysically increase of intruding mass. This can be
clearly seen in the results shown in Figs. 13.14 and
13.15 for case 5. Most important, we recognize that the
PGLS can stabilize the solution (Fig. 13.14 (S3) and
Fig. 13.15a,b). However, the solutions are not wiggle-
free. Even in combination with the fully implicit time
marching scheme the oscillations cannot be completely
damped out. The PGLS results are comparable to the
SUPG scheme (Fig. 13.15c). But, if comparing to a
solution obtained on a dense mesh, we see the signifi-
cant difference between results computed by the
upwinding techniques (PGLS, SUPG) and the more
accurate solution for a very fine mesh (Fig. 13.15d).

The test case 5 gives some insight into the charac-
teristics of the PGLS scheme. Inspecting the matrix G
of eqn (13-63) we see a dependence of the stabilization
term on the time step size Az. We can expect if using
smaller time steps the influence of the stabilization
term G reduces (or vanishes). We check this interde-
pendence for the case 5 if reducing the constant time
step size At at the given grid Peclet number Pg = 100.
The obtained results are shown in Fig. 13.16 for four
Co numbers. We note the following behavior. If reduc-
ing At somewhat the solution even improves in form of
smaller oscillations in the concentration pattern (cf-
Fig. 13.16a and 13.16b). But, if reducing further the
step size At the PGLS produces wiggles again. The
smaller the time step the more oscillations are gener-
ated as shown in Figs. 13.16¢ and 13.16d. We found at
a sufficiently small A¢ the solution becomes com-
pletely instable (Fig. 13.16d).

Figure 13.16 Distribution of concentration at 40 s com-
puted by the fully implicit PGLS at different Courant num-
bers Co and given grid Peclet number of Pg = 100 (case 5):
a) Co =0.75 (At = 1s), b) Co=10.375 (At =0.5s), ¢c) Co =
0.12 (At =0.16s) and d) Co = 0.075 (At =0.1s).



13.4.3 Three-and two-dimensional
transport modeling of the patch source
problem

The patch source problem refers to the transport of a
solute from a boundary source of finite extent into a
rectangular domain subjected to a uniform, unidirec-
tional velocity field. It has been studied by Leismann
and Frind" for 2D and Burnett and Frind!? in 3D. The
description of the benchmarks can be found in Segol’s
book!”. The definition of the 3D problem is given in
Fig. 13.17. The corresponding 2D problem refers to the
cross-section in the x-z-plane. The parameters used for
the 2D and 3D model are summarized in Table 13.3
and Table 13.4, respectively.

Figure 13.17 Definition of the patch-source problem in 3D
(from>17).

Table 13.3 Patch-source parameters used in 2D

Domain

Rectangle with dimension 200 x 40 in
arbitrary units [L]

Source location

x=0,0<z<8

Pore velocity

0.1 [L/T] in the x-direction, 0.0 in the
z-direction

Boundary condi- | C, = 1 at the source, C = 0 outside
tions the source at x =0

Initial conditions C=0

Longitudinal dis- 1.0 [L]

persivity, B,

Transverse dis- 1.0 [L]

persivity, B,

Grid characteris-

Uniform grid with 2000 quadrilateral

tics elements
Longitudinal 2.0[L]
spacing, Ax

Transverse spac- 2.0 [L]
ing, Az

Time increment, 10 [T]
At

Grid Peclet num- 2
ber, Pg

Courant number, 0.5

Co
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Table 13.4 Patch-source parameters used in 3D

Domain

Parallelepiped of dimensions 60 x 20
x 20 in arbitrary units [L]

Source location

on the plane x = 0 in the region
0<y<3,0<z<3

Pore velocity

0.1 [L/T] in the x-direction, 0.0 in the
y- and z-directions

Boundary condi- | C, = 1 atthe source, C = 0 outside
tions the source at x = 0 plane
Initial conditions Cc=0

Longitudinal dis- 1.0 [L]

persivity, B,

Transverse dis- 0.25 [L]

persivity, B

Grid characteris-
tics

Uniform grid with 30 x 20 x 20 hexa-
hedral elements

Nodal spacing in 2.0[L]
x-direction, Ax
Nodal spacing in 1.0 [L]
y-direction, Ay
Nodal spacing in 1.0 [L]
z-direction, Az
Time increment, 20 [T]

At

The analytical solution for the 2D patch-source
problem together with Leismann and Frind’s symmet-
ric matrix solution'* are shown in Fig. 13.18. The
present results obtained by the Crank-Nicolson PGLS

scheme are plotted in Fig. 13.19. It becomes evident
the agreement is quite perfect and a high accuracy
could be achieved with the PGLS technique.

1.0 =
- Analytical Solution
-8 +  Symmetric-matrix Solution ]
. J
L s .|
§ 4
s L
c
8
O 4t .
S
© b ~
2f 640 4
L J
0 N N 1
0. 20. 40. 60. 80. 100.

Longitudinal Distance

Figure 13.18 Concentration profiles along the center of the
plume for the 2D patch-source problem - Analytical and
Leismann and Frind’s results'®,
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Figure 13.19 Concentration profiles along the center of the
plume for the 2D patch-source problem - Crank-Nicolson
PGLS results.

The results computed by Burnett and Frind'-? for the
3D patch-source problem are depicted in Figs. 13.21



and 13.23 for selected concentration profiles. The
shown diagrams also involve analytical solutions
which exist for the 3D patch-source problem. Burnett
and Frind could achieve good agreements with the ana-
lytical results and our results obtained for both the
Crank-Nicolson PGLS and the Crank-Nicolson stan-
dard Galerkin-FEM also lead to a satisfactory agree-
ment as exhibited in Figs. 13.22 and 13.24 for

representative concentration profiles. However, we
note there are slight differences between the standard
GFEM and the PGLS scheme, where the GFEM gives
a better agreement with the analytical solution. The 3D
view of the obtained PGLS results and the used finite
element mesh are presented in Fig. 13.20.

Figure 13.20 a) 3D view (from bottom to top) of the plume distribution obtained by the PGLS scheme and b) used finite
element mesh.
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Figure 13.21 Longitudinal concentration profiles at y = 0 and z = 0 for the 3D patch-source

problem - Analytical and Burnett and Frind’s results 1>!7.
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Figure 13.22 Longitudinal concentration profiles at y = 0 and z = 0 for the 3D patch-source
problem - Crank-Nicolson PGLS and standard GFEM results.
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Figure 13.24 Transverse concentration profiles at y = 0 and z = 0 and at the time stage of 320

for the 3D patch-source problem - Crank-Nicolson PGLS and standard GFEM results.
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13.4.4 Hoopes and Harlemann’s two-
well problem

Hoopes and Harlemann® performed a lab-scale
experiment in a semi-cylinder filled with sand (Fig.
13.25). They measured the distribution of a solute
between a recharge and a pumping well. For an analyti-
cal solution they set up a conceptual model of a two-
dimensional horizontal confined aquifer which is
homogeneous and isotropic. The flow between the well
doublette at a distance, 2d = 0.61 m, is isothermal and
in a steady state. The solute transport is advective, dis-
persive along streamlines and has a molecular diffu-
sion. Comparisons of the analytical result with
experiments and various numerical solution schemes
have already been performed elsewhere®!'!"!'”. For the
present benchmark calcula-tions we focus on the newly
introduced PGLS scheme and check the results against
the analytical results, the standard Galerkin (GFEM)
and the streamline upwinding (SUPG) schemes of
FEFLOW.

One obtains the analytical solution in terms of the
velocity potential ® and the streamline function ¥ .
They are related to the original x,y-coordinates via the
conformal transformation

O+ = Ln(z+d)/(z d)
with z =Xx+iy

(13-68)

This transformation maps the area of the half circle
with radius »<d onto a strip of infinite length and
width ©/2 . The transport equation transforms to

2
o, [6C+D8—C] -0 (13-69)

ar " lad T 52

and is now one-dimensional with the symbols taken
from Appendix A. From our assumptions on the nature
of the transport process we obtain the dispersion coeffi-
cient D = B,v+D,.
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Figure 13.25 Plane view of Hoopes and Harlemann’s sand-
filled semi-cylinder.

The pore velocity v at a flux rate O of the recharge
well is

= Z = E—%E—a(cosh(CDD)Jrcos(‘PD))

- (13-70)

with the dimensionless quantities



2 2
D, = %m@—iﬂ—ﬂ— and (13-71)

D
@-d)’ +y°
l«l—’D = atan___:_%ld___
2
X +y —d

The velocity potential ®(x, y) and the streamline func-
tion W(x,y) are obtained after multiplication with
0/2nM . The initial and boundary conditions are

C(0,®,¥) = 0 and (13-72)
C(1, (~d, 0), ¥(~d, 0)) = C,

The dimensionless concentration at arbitrary time is
given by

c 1 ID_fDJ
C, = — = zerfc (13-73)
D Cy 2 [2 UD

with the dimensionless time ¢, = Q/(ZnaMdz) -t
Owing to the properties of the conformal transforma-
tion (13-68) the concentration can only be calculated
for spatial points with »<d .

The integrals

q)D q)D
_ [dd'p _¢DPp
I, = j—z and  J, = j—4dq>D (13-74)
—w 'D o VD

with v, = cosh(®p)+ cos(¥,) and D, = 2nMeD/Q
are likewise dimensionless and have been integrated
numerically. A complete analytical solution is possible
but cumbersome.

We did the numerical FEM analysis on the mesh of
Fig. 13.26 which has been refined in the half circle
with »<d where high Darcy fluxes occur. This mea-
sure lowers the grid Peclet number there. For the time
step control we employed the forward Euler/backward
Euler (FE/BE) predictor-corrector method. Hoopes and
Harlemann® assumed no dispersion across streamlines
in their formulation of Eq. (13-69). The longitudinal
dispersivity B, =0.0015 m is very small and gives rise
to a steep concentration front. Hence, the transport is
dominated by advection as shown in Fig. 13.27 for
breakthrough curves at two observation points along
the symmetry line between the wells. The analytical
curve with the steepest slope can only be approximated
by numerical schemes due to finite lattice element
sizes. Furthermore, well-known problems of oscillating
numerical solutions appear. The SUPG scheme has
been employed to dampen the oscillations but intro-
duces in turn additional non-physical dispersion. The
GFEM scheme without upwinding techniques shows
slight oscillations only for high concentrations at the
second observation point y = 0.305 m which may be
attributed to the coarser mesh in that region. The dis-
persion is reasonably low. Large wiggles occur for the
PGLS scheme for high concentrations at both points.
Even the onset of the breakthrough curves is not wig-
gle-free. For intermediate concentrations the PGLS
front matches the analytical solution quite close.
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Table 13.5 Parameter of the FEFLOW for Hoopes
and Harlemann’s two-well problem

Name Symbol Value
Steady flow
flow boundaries
flux at recharge well 0 6.4327 m’/d
hydraulic head at pumping well h Om

flow materials

aquifer transmissivity T 110" m’/s

Transient transport
transport initials

homogeneous concentration C(t=0,x,y) 0 mg/l
transport boundaries
concentration at recharge well C, 1 mg/l
transport materials
aquifer thickness M 0.089 m
porosity € 0.374
adsorption x 0
molecular diffusion D, 0-10° m’/s
longitudinal dispersivity B, 0.0015 m
transverse dispersivity By 0m
decay rate 9 010" /s
FEM
wellbore radius rg 0.05m
outer boundary radius R 1.45m
mesh: 3-noded triangle elements
number of nodes n, 1554
number of elements n, 2950
time stepping regime: automatic time step control
initial time step Aty 10° d
simulation time period T 0.2d

solver: direct Gauss elimination

The concentration distribution at ¢ = 0.05 d for all

256 | White Papers - Vol. |

three numerical schemes is depicted in Fig. 13.28. The
analytical solution has been omitted here since it is
only available in the half circle with »<d. The center
of the concentration front at C/C, = 0.5 is the same in
the whole region for all schemes. The SUPG scheme
again exhibits the expected additional dispersion.
Almost wiggle-free appears the GFEM scheme with an
exception at some distance above the recharge well.
The PCG solution oscillates considerably along the
concentration fringe of C/C, = 1. Larger oscillations
appear left of the region between the wells. But wiggles
can also be observed in the direction of the pumping

well. This asymmetry is again due to the finer mesh
between the wells.
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Figure 13.26 Finite element grid used.
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Figure 13.27 Breakthrough of the concentration at two
points y = 0.145 m (left) and 0.305 m (right) on the symme-
try line x = 0 between the wells.

In this benchmark calculation the GFEM scheme is
the method of first choice with reasonable dispersion
and very few oscillations. The PGLS scheme has not
performed sufficiently well due to the appearance of
wiggles with unacceptable amplitudes both for small
and high concentrations.
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Figure 13.28 Distribution of concentration computed by
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13.4.5 Highly advective solute trans-
port in a steady-state

This benchmark is taken from Nguyen’s technical
note'S. Nguyen employed a two-dimensional flow field
of the form

g, = %(32- ) and g =0 (13-75)

to compare his PGLS scheme with the Taylor-Galerkin
finite element splitting-up method of Donea et al.” in
the case of advective-diffusive solute transport in a
steady state. He found the PGLS scheme superior in
situations where advection severely dominates the sol-
ute transport.

Nguyen'® introduced the flow field (13-75) in a
square cavity of unit edge length as shown in Fig.
13.29. He performed his calculations on a mesh with
20 x 20 bilinear elements. For the transport problem he
studied the concentration distribution in the advection-
dominated regime for two different grid Peclet num-
bers Pg = |¢"“*|Az/2D . He used Pg = 125 and Pg =5
which lead to diffusivities of 0.02 and 0.005, respec-
tively, in arbitrary units. The initial concentration and
the concentration flow across the horizontal boundaries
were zero. A concentration gradient of unity is given
by the right and left boundary concentrations.

The FEFLOW calculations were done for a two-
dimensional horizontal confined aquifer of thickness 1
m. Setting up the simulation model within FEFLOW is
not straightforward since the curl of the flow field (13-
75) does not vanish, i.e. V x¢=0. Such fields do not
occur for groundwater flow problems. However, the

flow direction can be forced almost entirely into the x-
direction by making the aquifer very anisotropic with a
factor of 10 . We did the calculations for steady-state
flow and transient transport with the PGLS scheme. All
FEFLOW parameters for this benchmark are listed in
Table 13.6. Their values can be derived from Nguyen's
original problem if one sets the dimensionless edge
length to 1 m and introduces a concentration unit of 1
mg/l.

z 4 R
cC=0 cC=1.0
(0,0 - -
X

Figure 13.29 Square cavity with flow field and concentra-
tion boundary conditions.

The comparison of the concentration distribution at
steady-state for Pg = 1.25 (Fig. 13.30) and Pg =5 (Fig.
13.31) between Nguyen’s'é and the present FEFLOW
calculations shows almost identical results in both
cases. However, we found it very difficult to choose
appropriate time stepping regimes. For the smaller
Peclet number we used constant time steps at Az =0.01
d which means a maximal Courant number Co = 0.2 for
a grid element. For the larger Peclet number we took a
time step of Az =0.035 (Co = 0.7). In this case of high
advection the PGLS results react sensitively to a



change of the Courant number. Lower Courant num-
bers produce wiggles in the critical regions next to the
horizontal boundaries. Higher Courant numbers (or
time steps) render concentration distributions with too
much dispersion.

Obviously there exists only an interval of time step
lengths where the PGLS scheme remains stable. We
have already observed a similar behavior in the test
case 5 of benchmark 3.2. With this test case we found
that the main reason lies in the time step dependence of
the stabilization matrix G in Eq. (13-63).

To complete our analysis of this benchmark we
show the FEFLOW concentration distribution of a
steady-state flow and transport calculation with a dense
mesh of 6561 nodes and 12800 3-noded-triangle ele-
ments for the dimensionless diffusivity D = 0.005 in
Fig. 13.32. The grid Peclet number is now reduced
from Pg =5 to Pg~1. Here the dispersion at the
upper right and the lower left boundaries both of
Nguyen's and the FEFLOW results has been removed
by a high lattice resolution.

Table 13.6 Parameter for highly advective solute
transport in a steady-state

Name Symbol Value
Steady flow
flow boundaries
flux at right/left boundary q. H(3z-1)
m’/d
flow materials

aquifer transmissivity T 1-107*
m’/s

aquifer anisotropy 10°

Transient transport
transport initials

homogeneous concentration C(t=0,x,z2) 0 mg/l
transport boundaries
concentration along right/left C,, 1 mg/l; 0 mg/l
boundary
transport materials
aquifer thickness M Im
porosity € 1
adsorption x 0
molecular diffusion for Pg = 1.25 D, 231.4822 107
m°/s
molecular diffusion for Pg =35 D, 57.8704 - 10 ’
m’/s
longitudinal dispersivity B, 0m
transverse dispersivity i 0Om
decay rate 9 0 /s
FEM
edge length of square / Im
mesh: 4-noded quadrilateral ele-
ments
number of nodes n, 441
number of elements n 400

time stepping regime: constant time steps
At=0.01d for Pg=1.25; Ar=0.035d for Pg=5
simulation time period T 10d
solver: direct Gauss elimination
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Figure 13.30 Concentration distribution at steady-state and Pg = 1.25, Nguyen!¢ (left) and FEFLOW (right).

Figure 13.31 Concentration distribution at steady-state and Pg = 5, Nguyen'¢ (left) and FEFLOW (right).
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Figure 13.32 Concentration distribution at steady-state and
D = 0.005 for a dense mesh.

13.4.6 Two-dimensional unsaturated

flow and transport

Nguyen'® has set up a flow and transport model of
an unsaturated soil slab as shown in Fig. 13.33. He con-
sidered a vertical rectangle of 5 m width and 2 m depth.
Then he applied a small Darcy flux of 5.52 - 10° m/d
across 1 m at the top in the right edge of the slab. The
bottom of the slab is held at a small negative hydraulic
pressure y of -0.01 m which corresponds to a high
water content of a capillary fringe in the vicinity of a
water table. The initial vertical pressure head is set to -

1 m in the top half of the slab. Then it increases linearly
to -0.01 m at the bottom. Since the hydraulic head # is
related to the pressure head y by adding the elevation
z,namely 4 = y + z, the initial flow will be completely
downward from the top half to the bottom half even if
the latter is more saturated. We expect the top half of
the column to fall dry except at the right where a top
inflow provides enough water to prevent this process.

C, =1mgn l q = 5.528-5 m/day

i
1
1
, cOxz=0
2m 1
1
1
= == m e mmm e -
1 5m
Y
Y=-00lm

Figure 13.33 Problem measure, flow and transport condi-
tions for a vertical rectangular slab of Kent soil .

Nguyen used a soil moisture retention curve

s = —2 (13-76)

a+blyl°

and a relative conductivity relationship K ,(s)

K, - G:Z)d (13-77)

¥

with parameters which are typical for a very imperme-
able clay of the North Kent marshes in England. The
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symbols are explained in Appendix A and the parame-
ters are listed in Table 13.7.

Table 13.7 Parameters for unsaturated flow in Kent
soil from Nguyen'®

Name Symbol Value
saturated conductivity K, 5-107 m/s

porosity € 0.42
residual saturation s, 0.02
a 5.30

b 210 m*
c 0.39
d 18.8

Haverkamp’s parameters 4, B to match Nguyen's rela-
tion (13-77). The fitting process is difficult because sat-
isfactory results for the whole region of K. which
stretches over many orders of magnitude cannot be
obtained. This is due to the nature of the relation (13-
77) which decays algebraically with no inherent scal-
ing conductivity. We therefore choose to fit the relation
for a soil water saturation s> 0.6 because in the soil
slab relatively wet conditions prevail. Figure 13.34
shows the comparison of the fitted curve and Nguyen's
original curve. The fitted curve matches sufficiently
well for s > 0.6 but cannot be applied in dry conditions.
The resulting values for Haverkamp’s parameters 4, B
are listed in Table 13.7.

Table 13.8 Parameters for unsaturated flow in Kent

The relationships (13-76) and (13-77) do not match
both together any of FEFLOW s parametric models for
unsaturated flow. Only the soil moisture curve (13-76)
corresponds to Haverkamp’s relation

a(s,—s,)
s = s,,+——-5-—-——r—

: (13-78)
a+ |yl

if we choose the parameters appropriately. The choice
is straightforward with the parameters listed in Table
13.8. For the relative conductivity we are now forced to
use

K A

= (13-79)
r B
A+l

from the Haverkamp model. Thus, we must fit

soil in the FEFLOW model
Name Symbol Value
saturated conductivity K, 5-107 m/s
porosity € 0.42
residual saturation s, 0.0
maximum saturation s, 1.0
a=a/b 2.5238
B=c 0.39
A 0.01744
B 0.6548
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Figure 13.34 Relative conductivity relation for Kent soil as
used in Nguyen'® and in the present FEFLOW model.

The numerical calculations have been carried out on
a 50x20 mesh of bilinear square elements. We
employed the forward Euler/backward Euler predictor-
corrector time stepping technique (FE/BE) for the flow
and transport calculation. Figure 13.35 compares the
results of Nguyen and the present calculation after ¢ =
400 d for the pressure head y . They agree very well
despite the slightly different relationships for the rela-
tive conductivity.

At ¢t = 400 d the wetting front has not yet reached
the bottom of the slab. This is the case in Fig. 13.36
after 10,000 days but the steady state is not yet reached.
In this state the whole region is (almost) saturated since
water is continuously infiltrated at the top but cannot
leave the slab via the bottom boundary.

For the transport problem one can do a rough esti-

mation of the propagation of the solute front by multi-
plying the top boundary flux which determines the
velocity in the system by the simulation time. One can
divide this number by the pore velocity and obtains a
displacement of ca. 1 m after 10,000 days. Around this
time a concentration front should be well visible in the
slab.

For the FEFLOW computation we used the trans-
port parameter of Table 13.9. A boundary concentra-
tion of 1 mg/l has been imposed along the boundary
flux line at the top as shown in Fig. 13.33. The parame-
ters correspond to those of Nguyen except that we did
not allow for decay and adsorption. Therefore our con-
centration contours should have a larger extent than
those of Nguyen at a given time step. Unfortunately,
we were unable to reproduce this behavior for the
transport calculation. According to our estimation from
above a sizeable concentration distribution should
appear at some thousand days. This in contrast to
Nguyen's findings whose results suggest that the front
reaches the half depth after some hundred days. We do
not show his results here but this discrepancy of an
order of magnitude in the time of equal solute displace-
ment still needs to be clarified.

We now proceed to the comparison of the GFEM,
SUPG and PGLS schemes of FEFLOW for the concen-
tration distributions at 5000 days (Fig. 13.37) and
10,000 days (Fig. 13.38). First we state that our estima-
tion made a reasonable prediction for the extent of the
concentration front. Before 5000 days all three
schemes render wiggle-free solutions. From then on
wiggles appear with the GFEM scheme but the PGLS
scheme remains stable.
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Figure 13.35 Pressure head y distribution after 400 days from Nguyen'® (top) and the present FEFLOW computa-

tion (bottom), contour line units are [kPa].

At 10,000 days the PGLS scheme creates smaller oscil-
lations as well but for the GFEM scheme they extend
over the whole concentration front. The SUPG scheme
remains wiggle-free as expected but smoothens the

concentration front in an unphysical way. The wiggles
are not caused by the mesh which is homogeneous in
the whole region. They emanate from the boundary
point with the coordinates (4 m, 2 m) where the bound-



ary flux jumps from a finite value to zero. High flux
gradients occur in the vicinity of this point and are
most difficult to reproduce by the GFEM scheme
whereas the PGLS scheme is more successful.

mark calculation. It is noteworthy, though, that even for
the moderate conditions of a slow flow in a relatively

wet soil wiggles still cannot be suppressed by this
scheme.

We therefore prefer the PGLS scheme in this bench-
2

00"\~
%0 I ) 3 4 5
Figure 13.36 Pressure head y distribution after 10,000 days for the present FEFLOW computation, contour line
units are [kPa].

Table 13.9 Transport parameters for Kent soil in the FEFLOW model

Name Symbol Value
longitudinal dispersivity B, 107 m
transverse dispersivity Br 0Om
molecular diffusion D, 11574-10" m*/d
porosity € 0.42
decay rate 9 0.0
adsorption X 0.0
boundary condition Cy 1 mg/l
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Figure 13.37 Concentration distribution after 5000 days for Figure 13.38 Concentration distribution after 10,000 days
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13.5 Conclusions

We benchmarked the PGLS technique which has
been implemented into the FEFLOW package for tran-
sient 2D and 3D problems. The features and results we
found give rise to the following conclusions:

(1) The PGLS represents an alternative numerical
scheme to solve transient advection-dispersion trans-
port problems. In contrast to standard techniques PGLS
leads to symmetric matrix systems and possesses a
built-in streamline-like upwind characteristics without
any free parameter.

(2) The PGLS produces results which are comparable
to the standard techniques if the processes are charac-
terized by low to moderate advection.

(3) For advection-dominant problems (high Pg num-
bers) the PGLS cannot become wiggle-free.

(4) At high Pg numbers (coarse mesh) and small Co
numbers (small time steps) the PGLS can run into diffi-
culties. This seems to be a ’'natural’ property of the
PGLS, because the damping matrix G' in (13-63) is
weighted by the time step size. If decreasing Ar the
damping matrix G reduces with a quadratic descending
rate, while the other matrix terms in (13-60) or (13-61)
possesses only a linear or an independent descends of
At. As the result, the PGLS scheme must become
instable for sufficiently small Az.

(5) The PGLS damping matrix G in (13-63) is strongly
related to the pore velocity ¢/[es(y)] . For dry unsatur-

ated problems with s(y)— 0 the matrix G becomes
singular (cf. remark 2).

(6) The PGLS is not applicable to the divergence form
of the governing transport equation. On the other hand,
the maintenance of PGLS’s symmetric matrix property
forces to drop any other techniques than simple Picard-
iteration-based procedures for nonlinear problems.
Here, Newton iteration would not be applicable for the
PGLS (unless the symmetry is given up in favor of a
better convergence of the Newton scheme).

From the practical point of view, the PGLS provides
an additional alternative in modeling advection-disper-
sion equations. The advantage coming with the PGLS
is in form of a symmetric matrix system.
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Appendix A

Nomenclature

Latin symbols

G C, ML concentration and reference
concentration of a miscible chemical
species, respectively;

cf, ¢ L’r’e’! specific heat capacity of fluid and
solid, respectively;

D 7! tensor of mechanical dispersion;

D, 27! molecular diffusion in the porous
medium;

e 1 gravitational unit vector;

g LT gravitational acceleration;

h L hydraulic (piezometric) head;

1 1 unit tensor;

K L7 tensor of hydraulic conductivity for
the saturated medium (anisotropy);

k L’ tensor of permeability for the
saturated medium (anisotropy);

K, 1 relative  hydraulic  conductivity
(0<K,.<1, K, =1 if saturated at
s=1)

N; finite element shape function at node
B

P ML'T? fluid pressure;

0, 7! fluid flow sink/source;

Oc ML?T bulk mass sink/source;



o). 0

9n

R,R,

ML 3

mL 3

LT

L—l
L
T
1
T—l

MLT @

MLT @

bulk thermal sink/source;

fluid and solid thermal sink/source,
respectively;

Darcy flux vector;

normal flux on a boundary (positive
outward);

retardation and derivative
retardation, respectively;

storage coefficient;

saturation of the fluid phase

(0<s<1, s =1 if medium is
saturated);

residual saturation;

maximum saturation;

temperature and reference

temperature, respectively;

q/(&s) pore velocity;

q/(&s) pore velocity vector;
elevation above a reference datum,;

solutal expansion coefficient;
thermal expansion coefficient;

longitudinal and transverse

dispersivity, respectively;
boundary;

fluid compressibility;
characteristic element length;
time increment at level #n;
porosity (0 <e<1);
chemical decay rate;

tensor of thermal hydrodynamic

dispersion of fluid phase;

! thermal conductivity for fluid and

oy, ML

PP, ML
N

p ML

o L

X

v L

Q

Subscripts

ij,k

o

Superscripts

v 3 N ®

Abbreviations
AB/TR

Co
FE/BE

solid, respectively;

dynamic viscosity and reference
dynamic  viscosity of  fluid,
respectively;

fluid density and reference fluid
density, respectively;

solid density;

skeleton compressibility;

adsorption function to describe
Henry, Freundlich and Langmuir
isotherms;

pressure head (y>0 saturated
medium, y<0 unsaturated
medium);

domain;

nodal indices;

reference value;

element;
fluid (water) phase;
time level;

solid phase;

Adams-Bashforth/trapezoid rule
predictor-corrector technique;
Courant number;

forward  Euler/backward  Euler

predictor-corrector technique;
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GFEM

Pg
PGLS
SUPG

Galerkin-based  finite  element
method;

grid Peclet number;
Petrov-Galerkin least-square;
streamline-upwind Petrov-Galerkin



Extended formulations of constraints for Cauchy-
type (3rd kind) boundary conditions in FEFLOW

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

. . q,(x. 1) = D"~ h) (14-1a)
14.1 Basic Formulation of 3rd with
Kind Boundary Conditions
. . . " for K>h
FEFLOW provides alternative formulations of con- D = (14-1b)
o™ for K<h

straints for Cauchy-type (3rd kind) flow boundary con-
ditions (BC’s). Cauchy-type BC’s are commonly used
to describe river and other surface water boundaries in  \here the parameters and variables can be temporarily
groundwater modeling. Their mathematical formula-  and spatially dependent:

tion is given by the following expression' written for

groundwater flow (c¢f. Fig. 14.1)

b)

exfiltrating

| |
Figure 14.1 Transfer through a clogged river bed for a) infiltrating and b) exfiltrating conditions.
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in which

=0 (x,10)

= "(x, )

out
(14-1¢)
h(x, t)

B (x, 1)

thickness of the clogged river bed
(’colmation’ zone), [L];

hydraulic head, [L];

reference hydraulic head (e.g., water
level of the river), [L];

normal Darcy flux going through the
boundary  (positive  outward),
(LT

time, [T];

{x,y, z} space coordinates, [L];
boundary of groundwater domain
Q;

transfer  coefficient
leakage), [Tfl] ;
directional in-transfer coefficient,
(11

directional out-transfer coefficient,
(11

groundwater modeling domain;

(colmation,

14.2 Optional Constraints for
3rd Kind Boundary Condi-
tions

14.2.1 The standard form

The formulation of constraints is based on the for-
malism of complementary conditions for a type of BC'.
Cauchy BC'’s are related to a potential condition which
has to be prescribed on the boundary I' in form of the
reference hydraulic head W~ Naturally, such type of
BC is to be constrained by maximum and minimum
fluxes, 0", 0™ . The following standard form of
constraints for 3rd kind BC’s is used:

i"(¢) is valid if the flux is in the bounds: (14-2)
R max R max
{Max: 0 <0™(@1) else O =070
Min: OF>0™"(r) else  OF = 0™ (1)
where QR = —|q,dV [LSTfl]representS the summed-

up, called lumped balance fluxes at nodal points to
which the Cauchy-type boundary values are related. A
typical example of a flux-limiting infiltration from a
river bed is shown in the sketch of Fig. 14.2. If the
groundwater table decreases below the location of the
river bed a specific situation in form of a ’flow separa-
tion’ occurs. Physically, the zone between the river bed
and the water table becomes unsaturated and the linear
relationship (14-1a) for the infiltrating water as a func-
tion of the difference A4 between the reference (river)
water head #* and the groundwater head /4 cannot be
maintained anymore. It requires the prescription of the

. max
maximum bound Q.



infiltrating exfiltrating
Ah@) =hR-h

surface

-_———

W\ h

Figure 14.2 Flux-limiting infiltration from a river bed for-
mulated by a maximum flux constraint 0™ (¢) .

(3rd kind) |£ Transfer (3rd kind) |£
Constrained by FLUN: —i | tn3/d] Constrained by HEAD; —i [[u]

- Time constant « S Min|-ne [ Time constant «
= f—r

F Tire constant F Tine corstant »
T Sy

il

B
R
D

+ tar

Return Return

Figure 14.3Input menu for prescribing a) flux-constrained
and b) head-constrained transfer conditions for Cauchy-type
BC’s.

FEFLOW provides the standard form of constraints
for Cauchy-type BC’s, where the bounds 0™ and/or
Q™" are directly input as shown in Fig. 14.3a. This
formulation is termed as flux-constrained transfer BC.

Such a limitation by fluxes represents a quite gen-
eral formulation. The min-max fluxes are user-speci-
fied input parameters, which can be quantified by user-
own rules and data. However, the disadvantage is here
that the determination of the constraint fluxes requires
geometric information of the boundaries (e.g., transfer
areas) at a given mesh. The new formulation of con-
straints to be described next overcomes this drawback
and is more useful in practice.

14.2.2 The new form

Instead of prescribing the constraint fluxes directly
the new form allows the input of maximum and mini-
mum head values, 2™, ”™" , which are used to derive
the constrained min-max fluxes for Cauchy-type BC'’s.
This form is termed head-constrained transfer BC and
can be optionally selected in the input menu for trans-
fer constraint conditions of flow boundaries (Fig.
14.3b). In contrast to Eq. (14-2) the mathematical for-
mulation of the new head-constrained transfer BC is as

follows:

hR(t) is valid if the head is in the bounds: (14-3)

m

Max: h<hmax(t) else ¢, = q, ™= —(I)(hR—h

max
)

Min: h>h"™1) else g, = ¢"" = —o(h" - n™")

n
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The advantage of this constraint formulation is that the

limiting (constraint) fluxes q:m, q:ﬁn are rates (no

more discharges!), which are computed from the input
head constraints 2™, ™" . The physical meaning of

the head constraints is explained for the minimum head
min

h " limit as illustrated in Fig. 14.4.

saturated colmation zone

)
i |
r A
hmin unsaturated zone
=<1 |
ho|n®
saturated zone (groundwater)

Figure 14.4 New head-constrained transfer BC for a flux-
limiting infiltration from a river bed.

The river bed is clogged by a colmation zone with a
thickness d. A perched water situation occurs, where
the groundwater table has no more a direct hydraulic
contact with the surface water. An unsaturated zone
forms below the river bed. Typically, in the colmation
zone the subsurface water remains saturated (Fig.
14.4). Assuming the validity of Darcy’s law for the col-
mation zone, the normal flux from the river entering
the unsaturated zone can be assessed as

col R
g, Kcol%lzz _ _%_(hR_hlnln)

(14-4)

where K is the saturated hydraulic conductivity of
the colmation zone. It can be easily seen that Eq. (14-4)
is equivalent to the constraint flux q:"“ in Eq. (14-3)
derived from the minimum head limit #™" , where the
transfer coefficient is simply given by

Kcol
o= =— 14-
y (14-5)

REMARK 1: The directional in-transfer and out-trans-
fer coefficients ®", ®°" are assigned according to the
minimum and maximum head constraints, viz.,

. . R .
m min . min
h since h >h

max
h

for
(14-6)

out max
]

) R
for since h <h

REMARK 2: The new head-constrained transfer BC is
very efficient. It need not a switching of BC’s if con-
straints are set and reset during a simulation run.

REMARK 3: Time-dependent head-constraints are
appropriate to prescribe intermediate flux conditions
along a boundary (e.g., at certain times no flux condi-
tions should occur as applied to temporarily moving
BC’s). Since W= hR(t) a temporal no flux condition
is automatically satisfied if the reference head K"
becomes identical to the constrained head 4" (or
1™ ) in time, that means written for the minimum con-
straint



g, = q"™"=0 for (14-7)
min

KRy = ™) and  h(e) < K™ (0)

To force a temporal no flux conditions independent of
the groundwater head 7, the maximum head constraint
has to be set additionally to the reference head. It
requires
q, = qnminEO for (14-8)
K6y = ™™ (1) = K™ (r) and arbitrary h(7)
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Nonlinear dispersion in density-dependent mass

transport

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

15.1 Introduction

In modeling density-dependent flow and mass
transport problems an increasing interest has been
cases where high-concentration differences in the sys-
tem occur, e.g., applications to hazardous waste dis-
posal in salt formations or brine transport in deep
aquifers. Traditionally, density-dependent mass trans-
port is modeled on the basis of the classic Darcy law
and the linear Fickian dispersion equation. But, in one-
dimensional laboratory experiments >* with high-con-
centration gradients it was found that the dispersivity
does not seem to be a property of the porous medium
alone. It was observed that the mixing process of salt-
water is dependent on the concentration gradient and
the dispersivity had to be changed from case to case to
get a sufficient fit to the measurements. Using same
porous media the dispersivity had to be decreased as
the difference in concentration of the resident and dis-
placing fluids increased. In past, various attempts were
made to explain this phenomenon. A formal depen-
dence of dispersivities on the salt concentration has
shown an inappropriate and a theoretically contrary
approach because the dispersivities are a geometric

property of the porous medium and should not be
dependent on the physicochemical property of the fluid
flowing through the voids.

Hassanizadeh & Leijnse? and Hassanizadeh? have
proposed extensions of the dispersion theory in form of
a non-Fickian law. In using such a nonlinear dispersion
theory the laboratory experiments could be explained
and fit reasonably. New experiments have confirmed
these theoretical findings*. Furthermore, from the theo-
retical point of view the non-Fickian dispersion is con-
sistent with the classic approach and theoretically well
founded.

The nonlinear (non-Fickian) dispersion law has
been implemented in FEFLOW! both for 2D and 3D
mass transport processes. It represents an extension to
the classic linear Bear-Scheidegger dispersion law and
can be optionally selected. In the following the theoret-
ical basis of the nonlinear dispersion theory will be
described in some detail. Then the implementation in
FEFLOW and the numerical solution of the nonlinear
mass fluxes will be discussed. Finally, an example is
presented which benchmarks the implemented rules.
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15.2 Basic Equations

The starting point forms the mass conservation
equation written as
a(eC)

A A v AN + =
Er V- (Cq+J)=r

(15-1)
where the symbols are summarized below in the sec-
tion ’Notation’. The dispersive mass flux vector J is
commonly expressed by the linear Fickian type equa-
tion, viz.,

J=-D-VC (15-2)
The hydrodynamic dispersion tensor D is assumed to
be independent of the concentration C and its gradient.
It is, however, considered to be a function of the flow
velocity ¢ and is commonly described by the Bear-

Scheidegger dispersion relationship for a porous
medium according to

D = (04 Brla 1 + (B, - Byt

(15-3)
For the linear Fickian law (15-2) the dispersive mass
flux of a solute is proportional to the solute concentra-
tion gradient. But, if large concentration gradients
exist, nonlinear effects become important and J has to
be replaced by an extended nonlinear (non-Fickian)
dispersion law?

JBIJ+1) =-D-vVC (15-4)

where B is a new high-concentration (HC) dispersion
coefficient and D is still the known Bear-Scheidegger
dispersion tensor given by Eq. (15-3) with longitudinal
and transverse dispersivities considered to be (con-
stant) properties of the porous medium and indepen-
dent of the fluid properties and transport processes.

High concentration-gradient experiments>* have
shown that the nonlinear dispersion law (15-4) gives
very good fits to measured breakthrough curves. It is
found that the HC dispersion coefficient B varies
inversely with the flow velocity ¢. Schotting et al.*
have summarized their fitted experiments in the fol-
lowing approximate expression for § = B(q) as

B(q) = L)’Tl%i[smz/kg] for (15-5)
q
910 <|lql <310 °[m/s]
15.3 Implementation in

FEFLOW
15.3.1 Selection of dispersion laws

In FEFLOW the modeler can use either the standard
linear Fickian dispersion law (15-2) or the nonlinear
non-Fickian dispersion law (15-4). Both options can be
set in the Problem Editor for the mass material data.
Figure 15.1 exhibits this part of the editor, where the
both dispersion laws can be chosen and the additional
HC-B -parameter is input in the case of the nonlinear
dispersion.



Sorption| Henry Coeff
Molecular diffusion
Longitudinal

irst-order decay
Source(+)/sink{-)

option HC dispersion coefficient

Return

Figure 15.1 FEFLOW’s mass material data editor menu to
choose the mass dispersion law option and to input the HC
dispersion coefficient in the case of nonlinear dispersion.

15.3.2 Numerical solution for nonlin-
ear dispersion

The numerical solution of the governing balance
equation (15-1) with the nonlinear dispersion law (15-
4) requires a specific iterative strategy. A recursive
scheme is preferred which is performed by the follow-
ing iteration procedure:

0. initial Jy=0
-2
1. step J =- B"JOH 1 Ve,
2. ste R — T (15-6)
o U
-__Db
T. step J, = - AR VC,

where 1 represents an iteration counter. The iteration
(15-6) is performed at each time step in dependence on
the selected time stepping strategy: (1) For fixed (pre-
defined) time steps it is iterated at each time level. The
procedure is terminated if the convergence criterion is
satisfied. (2) For the adaptive predictor-corrector time
marching the nonlinear solution is fully controlled by
the time step itself, where the nonlinear dispersion is
linearized in time according to

— D . -
I _7BHJn||+1 VC,iy (15-7)

where n corresponds to the time level.

15.4 Example

Schotting et al.* have derived analytical solutions in
1D, which will be used to benchmark FEFLOW with
the nonlinear dispersion law. We consider the displace-
ment of a high concentration through a column with
constant properties. The data are summarized in Tab.
15.1.
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Table 15.1 Data of the displacement experiment

Quantity Symbol | Magnitude Unit
Length of column L 4.5 m
(-0.5m <z<4.0m)

Flow rate q, 3.209-10°° ms '

2.772576 md’
Porosity € 0.2 1
Boundary concentration C, 2.85714 - 10° mgl”
(brine input)
Molecular diffusion D, 0.0 m’s '
Longitudinal dispersiv- B, 1.0 m
ity
HC-dispersion coeffi- B 10* m’s kg’
cient 1.1574- 10" midg "

The column is initially filled with freshwater p ,
C=0.At¢=0 brine p, = p(C,) starts entering the
column with uniform specific discharge ¢,. This
implies the following initial condition

C, for z<0
0 for z>0

C(z,0) = { (15-8)

In FEFLOW’s numerical simulation the outflowing
boundary is imposed with a natural gradient boundary
condition VC| _, ~0. The column is discretized by
900 linear quadrilateral elements resulting an spatial
increment of Az = 0.005 m . For the temporal approxi-
mation the default forward Adams-Bashforth/back-
ward-trapezoid rule predictor-corrector scheme with

adaptive time stepping (error tolerance 1074) is used. It
requires 144 time steps to simulate the displacement
process for a dimensionless time Y defined as

2
90 4,
Y =t—0m—s—>— 15-9
10~ 55, (159
upto Y = 1.0. The numerical results are in a very good
agreement with the analytical results obtained by
Schotting ef al.* in form of a semi-explicit solution as
shown in Fig. 15.2.



Notation

C =

Density, p/p;
S
(=2
T

<
i
T

o—o analytical4
—— FEFLOW

0.0

salinitgl, saltwater concentration,
(ML ™);
brine input concentration, (ML73) ;

tenzsor 1of hydrodynamic dispersion,
(L°T);

effective  molecular  diffusion,
w’rh;

unit (identity) tensor, (1) ;
dispe{givgl mass flux vector,
MLT Y,

time level;

Darcy velocity vector, (L Til) ;

Depth, z

90

e

t
p
B Br

2.0

Figure 15.2 Numerical density profiles simulated by FEFLOW at selected dimen-
sionless times Y in comparison with the semi-explicit analytical solutions given by
Schotting et al.* for a brine displacement in a column at nonlinear dispersion.

uniform specific discharge, (LT 71) ;
chemical reaction rate, (ML73 T );
time, (7);

high-concentration (HC) dispersion
coefficient, (M 'L’T);
longitudinal and transverse
dispersivity, respectively, (L) ;
porosity, (1);

density of freshwater, (ML_S) R
brine density, (ML73) ;

iteration counter;

dimensionless time, (1) ;

Nabla (vector) operator, (Lil) ;
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Consistent velocity approximation in the finite-
element simulation of density-dependent mass
and heat transport processes

H.-J. G. Diersch

WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany

16.1 Introduction

To compute the derivatives (velocities) from a finite
element approximation, the obvious and self-consistent
approach is that of directly differentiating the finite ele-
ment solution at points of interests. In groundwater
flow simulation local Darcy velocities are calculated
by differentiating the hydraulic head # (or pressure p)
solution and using the appropriate constitutive rela-
tions. This direct computation results in lower order,
discontinues derivatives with inferior accuracy at the
boundary of the elements and at the interelement nodes
where accurate values of fluxes are usually desired. To
achieve accurate derivatives different techniques are
practiced.

In the finite element method local and global
smoothing (projection) techniques are commonly
applied where the derivatives are computed at optimal
sampling (Gauss) points. The local projection proce-
dure consists of an extrapolation from the superconver-
gent points and a subsequent averaging at nodes to
obtain accurate nodal velocity values. Global smooth-
ing assume a continues interpolation of the derivatives

of the same form as that used for the basis functions.
Such kind of projections are considered as consistent
finite element derivatives. FEFLOW uses these tech-
niques which are described in Diersch and Kolditz® in
the context of coupled flow and transport simulation,
which are summarized in the Appendix B. In practical
finite element computations and numerous benchmark
tests>*%14 it has been shown that continuous deriva-
tives by using the velocity smoothing techniques give
accurate solutions.

In density-dependent flow and transport processes a
proper care should be taken in the derivation of the
velocities. This has to do with the lower-order approxi-
mation attainable for the pressure (or head) gradients
Vp which can conflict the high-order spatial variability
in the gravity (buoyancy) term pg. The problem has
been addressed by Voss?, Voss and Souza?!, Herbert et
al."! and Leijnse!’, who proposed modified schemes in
evaluation the discontinuous derivatives termed as con-
sistent velocity approximation. In Voss and Souza’s
approach the spatial variation in the gravity term is
reduced to the same spatial functionality occurred for
the pressure gradient, i.e., for linear finite elements the
pressure gradient is constant (piecewise constant per
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element) and accordingly the gravity term should be
also piecewise constant. Leijnse extends this procedure
and prefers averages of the buoyancy term only in the
appropriate gravity direction. While Voss and Souza?!
and Leijnse!” tried to overcome the problem of consis-
tency by precision reduction, Herbert et al.!' solved it
by introducing a second-order approximation for the
pressure (quadratic shape functions) and a linear-order
approximation for the salinity (linear shape functions).
Herbert et al.’s mixed approach is more natural in the
finite element method (weighted Galerkin statements),
but, it results in additional computational costs.

The smoothing techniques® (local and global projec-
tions) for the velocities which are derived in the ele-
ments without modifying the spatial variability in the
gravity term (no precision reduction) are an efficient
alternative for deriving consistent velocity fields. It
results in a continuous representation of the nodal
velocities. The derivatives are used on an element
patch surrounding the nodes. In this way the technique
is consistent with an integral evaluation of the flux
terms and the patch-related nodal velocities represents
averaged quantities in the weighted sense.

The question arises now whether the projection
(smoothing) techniques for deriving patch-related
nodal velocities are sufficiently consistent for density-
dependent problems. Indeed, we can confirm it in all
previous tests and applications. The benchmark tests in
form of the Henry problem*'*, the Elder problem®'4,
salt dome problem®'* and others>”!3 revealed good
agreements with the other solutions available. More
recently, however, an obvious counter-example of a
high-contrast density problem gives rise to a critical
review of the used velocity derivation procedures.

Oswald'® performed a series of three-dimensional
laboratory experiments termed as the saltpool problem
which involves stable layering of saltwater below
freshwater. A discharge of water causes a transient
upconing of saltwater. In varying the density contrast in
the upconing process the measured quantities for
instance in form of the salinity breakthrough at the out-
let have shown a significant influence due to gravity
effects. Oswald et al."? tried to recompute the saltpool
processes by using different codes (for more see'®).
While at a lower salinity (1% salt mass fraction) a good
agreement was found, at high salinity (10% salt mass
fraction) the computed saltwater concentration at the
outlet became generally too large and often quite depart
from the measurements. This discrepancies gave rise to
numerous investigations and the development of
improved numerical schemes.

Ackerer et al? applied a new numerical code
TVDV-3D which is based on mixed and discontinuous
finite elements (for more details see Ackerer et al.').
Their results are satisfactory, however, the simulation
overestimates the saltwater mixing concentration for
the lower density case and underestimates the saltwater
breakthrough at the outlet for the high density case.
Most recently, Johannsen et al.'® presented improved
results and achieved a good agreement with the mea-
surements for both cases of low and high densities.
Some parameters, particularly the permeability, the
porosity and the transverse dispersivity were adjusted
within accepted bounds in order to fully match the
results of the physical experiment. From numerical
point of view, their results are simulated with the new
code d3f (for more, see Frolkovic?) in which improved
techniques for computing consistent velocities under



strong density effects are incorporated. These tech-
niques were substantially responsible for the success of
the difficult simulations of the saltpool problem at high
salinity contrast.

As a consequence from the saltpool simulations the
techniques for approximating the consistent velocities
were also revised for the FEFLOW code. In the follow-
ing a new improved technique is described and tested
which is implemented in the FEFLOW code.

16.2 Basic Equations

For simulating density-coupled flow and transport
processes the following equations have to be solved
(symbols are listed in Appendix A):

)y (pw) = g,

a(£C)

5 +V-(Cv+Jp) = Ot (16-1)

P .
SlepE +(1-0)p'E'1+V - (pE v +Jp) = O

where the fluid velocity (Darcy flux) v is explicitly
given by

v = —l-"(Vp—pg)
M (16-2)

v = -Kf, - (Vh+pe)

introducing the relative density E)

(16-3)

which is written in the two equivalent formulations in
accordance with the chosen primary variable in form of
the pressure p or the hydraulic head 4, where the fol-
lowing relationships hold*

h = L+Z
Po&
g = —ge
R
S = m
K - kpog
Ho
E'= (), E=E (16-4)
h=p(C )

P = p(CT) = pu[ 1+ 5 (C-C) BT,
Jo = ~(eDJ+D)-VC

Jy = —[(eX +(1—e)A)I +peD]- VT

D=<m—sﬁ%%f+ﬁmwz

The velocity v in (16-2) is coupled with the conserva-
tion equations (16-1) through the dependence of fluid
density p = p(C, T) on the concentration C and tem-
perature 7 and, additionally, the dependence of fluid
viscosity u = u(C, T) on the concentration C and tem-
perature T'.
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p=p,T(P;—p,)z ze[0,1] (16-5)

16.3 The Hyd rostatic Condition For the simple vertical problem the Darcy velocity is

16.3.1 Equilibrium requirement: The k.
requirement of consistency Ve T T O
k
Consider the following hydrostatic situation'? for a vy T _‘ﬁzayp (16-6)
finite element as shown in Fig. 16.1. For simplicity, the k
interval Az is [0,1]. v, = ——;—Z(azp +pg)

We assume the density p is varying linearly in the z-
direction of gravity, viz.,

P1 P1
| f
g
v #0 \ exact
/
— approximated
I RN r PP
g z
v,#0
2 density p pressure
, -

Po Po
Figure 16.1 Hydrostatic conditions in a finite element of length Az = 1 under a linear density gra-

dient p = p,+(p; —p,)z; spurious vertical velocities v, caused by an inexact pressure
approximation.

Under a hydrostatic equilibrium the velocity vector v For the above example (Fig. 16.1) with a vertical den-
is (must be) zero everywhere. This is termed as the sity gradient we have to require
requirement of consistency: y
op = ﬁyp = 0; 0.p = —pg 0,h = —pe, (16-8)
\4

0; Vp = pg Vh = —pe (16-7)
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and the pressure p has to satisfy the following relation-
ship

z

p = p(z) = —g[p(0)do (16-9)

Z{)

which yields
P =D —g(poz + 2P ; p"zz) (16-10)

Similar expression can be derived for the hydraulic
head £ :

h = h(z) = —ezj[a(e)de (16-11)

Z{?

h = hg~ ez(F;oZ + 1z Po ; 9022)

(16-12)
Equation (16-10) indicates that for a /inear density p a
quadratic shape of the pressure p is required to main-
tain a hydrostatic equilibrium for all z in the interval.

16.3.2 The artifact: Spurious noncon-
sistent velocities and common ways to
overcome

Typically, in a discretization algorithm the concen-
tration C and/or the temperature 7 is linearly approxi-
mated in a finite element. This leads to a corresponding
linear relationship for the density p as considered

above. But, the pressure p (or alternatively the head 4 )
is also approximated by a linear function in an element.
This is (in the example of Fig. 16.1)2

p—=>p =p,+t(p,-py)z ze[0,1] (16-13)

Inserting (16-13) in the Darcy equation (16-2) or (16-6)
and using the exact nodal values p, and
P, =p,—g(p,+p;)/2 from (16-10) we get for the z-
component of the approximated velocity

k., 1
v = ,Fg(pafpl)(if ) ze[0,1]  (16-14)

It clearly indicates that the approximated velocity
only vanishes at the middle point (z = 1/2) while at the
other points artificial nonzero quantities occurs which
take maximum values with opposite signs at the left
and right point (c¢f. Fig. 16.1). Such spurious noncon-
sistent velocities can waste the computational results in
form of an overestimation of the mixing processes at
strong density coupling. In the advective terms of the
governing transport equations (16-1) it will often not
have a large effect, since the integration over elements
and the assembly of adjacent elements averages out the
nonconsistent velocities. However, if such spurious
velocities are used to evaluate the dispersion tensor at
element level an artificial increase of hydrodynamic
dispersion (mixing) can result'’.

The most important way to overcome the problem is
in reducing the spatial variability in the gravity term.
Commonly, the gravity term is averaged in the appro-
priate direction so as proposed by Voss?®, Voss and
Souza?! and Leijnse!”. In the above example we have to

FEFLOW | 287



use now p = (p,+p;)/2 and find with the exact nodal On other possibility is in averaging the nonconsis-
values p, and p, = p,—g(p,+p;)/2: tent velocities at nodal points by local or global projec-
tion (smoothing) techniques as mentioned above and
thoroughly described in Appendix B. It smooths out the

k . i . .
V.= pu—g(p”;—p‘)— po " g(p”;—p') =0 (16-15)  spurious velocities. Let us consider the following
I — examples as shown in Fig. 16.2, where a node & is con-
o.p pg

sidered which is shared by two elements.

which satisfies the equilibrium at all points.

case 1 case 2

P2 P2
'§ v, # 0
k)
2
o
>
k=
8 ) k —
2 P1 P1
g
Q
Q
=
]
=

density p density p
Po Po

Figure 16.2 Continuous nodal velocity by averaging (smoothing) nonconsistent
velocities for two cases of vertical density profiles.

The smoothing procedure for the nonconsistent veloc-
ity (16-14) leads to a velocity at the node k as If we can assume that the density p, at the node & is an
average of the upper and lower density values, i.e.,
_ky 1p(p, T P2) p; = (p,+p,)/2, then the nodal velocity (16-16)
V2 T ng[ 2 7p1} (16-16) becomes consistent v, = 0. Obviously, this is true (or
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approximately true) for typical density profiles as
shown as case 1 in Fig. 16.2. However, if the density
profile is strongly variable over a short distance (e.g., a
saltwater-freshwater interface with a high density con-
trast) the nonconsistent velocities do not average out.
This can be seen for the case 2 in Fig. 16.2 at the node &
where an upgoing spurious velocity remains in order of

_ kzz 1 (poipl)
v, = IgE[TJ (16-17)

and the consistency is not satisfied at the node under
such conditions.

We can summarize and conclude the following:

(1) Consistency is the requirement to a zero velocity
under hydrostatic conditions for an arbitrary stable
density gradient. A consistent velocity approximation
satisfies the relationship (16-7) at the local evaluation
points.

(2) Averaging of the gravity term for each element
yields a consistent velocity approximation, however,
the accuracy in the spatial variability is reduced.

(3) Smoothing of nonconsistent velocities derived at
the Gaussian evaluation points averages out spurious
velocities in the most cases. However, if the density
gradients become very large spurious velocities at local
points can remain. Accordingly, smoothing is a proce-
dure to derive continuous nodal velocities which are
often, but not always consistent in the sense of the
statement (16-7).

(4) There is a desire to a more general, accurate and
robust procedure for a consistent velocity approxima-

tion applied to density-dependent mass and heat trans-
port problems.

16.4 New Formulation of Con-
sistent Velocity

16.4.1 The improved Frolkovic and
Knabner algorithm

Frolkovic®® and Knabner and Frolkovic!? proposed
an new algorithm for approximating consistent veloci-
ties in two- and three-dimensional finite elements.

16.4.1.1 Transformations in local coordi-
nates

The algorithm is described for affine and isopara-
metric families of elements, where the computations
are realized on generalized (local) coordinates
(&,m,¢). The mapping from the local coordinates
(&, 1, €) to the global ones (x, y, z) is given by

X = X(E_,, n, C) = meNm(E-” n, C)

y=yEn,0) = > y,NuEm 0 (16-18)

z = Z(E» n, C) = zszm(E”n’ C)

where x,,y,,z,, m = 1,2,... are the coordinates of
the vertices (nodes m ) of the element and N,, are the
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finite element shape functions. The mapping requires

1 ~
=-Kf -J -(V h+pd- 16-22a
that the transformation Jacobian J is nonsingular, ’ T Venghtel-e) ( )
where J is given by or
_ ~1 -
0 0ux Oy Oz v= KT (Ve ohtree )  (16-22b)
J = 0nixny.z) = (0,x 0,y 0,2 (16-19)
9 Opx Opy 0pz 16.4.1.2 The new formulation
(xmaéNm) o ma&N m) (ZmaaN m) Introducing the following integral functions
= z (xmanNm) (ymﬁnNm) (zmanNm)
" @0 N,) 1,0 N,) (2,0N,,) &
H, = H(&,m,6) = [p(6,n,0)e.(6,m, 0)do

Using the transformation we obtain 0

n
6N Hy = Hy(&m,6) = [p(5,0,0)e,(5,0,0)d0 { (16-23)
0
Vi noN =10Ni =J-VN (16-20) ¢
ON H, = H(&n.0) = [p(& n, 0)e (& n, 0)d0

0
-l
VN =J ’V(i,n,G)N

Since
for the derivatives and 8§H 2
8an = Pe; 0 (16-24)
e
€ » 6‘€H€
een o) = enp = J-e e=J €&, 0) (16-21)
€ we can write the Darcy velocity (16-22b) in an equiva-
lent form

for the gravity vector, where J ' is the inverse Jaco-
bian. Using these relationships the equivalent formula-
tion of the Darcy velocity (16-2) in local coordinates is
given by
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O(h+Hy)
v = Kf,J - 10,(h+H,) (16-25)
Oc(h+Hy)

These new integral functions Hy, H,, H, allows us to
obtain the same spatial variability for both the head (%)-
term and the gravity term.

The consistency of (16-25) in the definition of (16-
7) can be proved. Assuming the gravity acts in the z -
direction, i.e., p(x,y,z) = p(x,,y,,z) We can write

g
Hy = [p(x, 7, 2(0,m, ))ecdd (16-26)

0
z(&m, 6)
= e, I P(X, Y,y 0)do

20

where (xg, vy,29) = (x(0,0,0),(0,0,0),2(0,0,0)) and
similarly for /, and H,.

In the finite element method the functions
h, He, H,, H, are interpolated by their nodal basis func-
tions:

h =% h,N,(&n,©)
" (16-27)
Hy =3%H,,N,(&n,C)

HC = ZHQmNm(E» TL C)

and we obtain the velocity (16-25) in the discretized
formulation

v = —Kf S 3 Oyt Hy 0 N (6, ) b (16:28)
(hy + Hep )0 N,y (5 1, )

which represents a fully consistent approximation of
the Darcy velocities. We solve (16-28) for given heads
h and the values of the Hé, Hn’HC -functions at the
nodes m. The nodal quantities H.,. H,, H., are
dependent on the finite element types and will be eval-
uated next for /inear elements in two and three dimen-
sions. In doing this, the relative density ;3 in the gravity

term is interpolated according to

p =3 puN, (&N, 0) (16-29)

where f)m are the density values at the node m. In
FEFLOW the following constitutive relationship is
used for the density p
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P pof 1+ e (C-C-BT-T)| (1630

as a function of the concentration C and the tempera-
ture 7. Accordingly, the relative density p (16-3) is
given by

pcc

(C-C,)-B(T-T,) (16-31)

and the finite element expansion (16-29) can alterna-
tively be written as

- o
Prc- COZNm(Cm ~C,)=BY.N,(T,,~T,) (16-32)
m m
or
n N, =1-t-7
©.1) N, =
Ny =
0,0) (1,0) g

P = g Co = C) BT, T, (1633
in relation to the expansion (16-29).
16.4.1.3 The nodal quantities 1, . H, . H,,

of the integral functions

Linear triangular element in two dimensions
For a triangle we use the local coordinates as indicated
in Fig. 16.3.

ON, = -1 o,N, = -1
0N, = 1 8,N, = 0
3N, = 0 8N, = 1

Figure 16.3 Local coordinates, shape functions and local derivatives for the

linear triangular element.

The Jacobian J (16-19) appears independent of the
local coordinates (&,7m) and the gravity (e ey) in
the local coordinates from (16-21) is a constant vector.
Accordingly, we can write



& &

Hy = [p(8,m)e (0, 1)d0 = e [p(0,1)d0 be {%H&}
0 0 !
5 3 N Hyy +0:NyHyy + 0N H,
- _ g €1 e €2 ¥¢ &3
- e&j[ 3 Nm(e,n)pmjde {a Ny Hy 0Nyt + 6 NyH n}} (16-36)
0\m=1 (16-34)
3 ~ {eg(pl +P2)}
= egj[(lfﬁfn)pﬁepﬁnps]dﬁ Zley(p1+p3)
0
2
- S e+ 5, fEnn : . o .
e[ (8- F ~Enjpi+ P2+ inps representing a consistent approximation in which the
density is appropriately averaged in the gravitational
directions.

and similarly for H, . From the integrals we find the
nodal values for #, and H, as

H,(0,0) = Hyy = 0
1 ~ ~
H,(1,0) = Hey = 5e:(p1 +p2) (16:352)

H(0,1) = Hy3 = 0

H,(0,0) = Hyy =0

H,(1,0) = Hy, = 0 (16-35b)

H,(0,1) = H 3 = -e (Pl +p3)

Now we can express the gravity term (16-24) in local
coordinates as
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Lo o Ny = 3-8 -n)
4 3
Ny = 3(1+9)(1-m)
——
5 N, = oo
1 2
(1) 4N = g-90 )

o, = —3(1-m) o,N, = —5(1-8)
3N, = }‘(1 - N, = 7}‘(1 +E)
BNy = i(1+n) o,N, = i(1+g)
ON, = 3'-1(1 +1) 0N, = %(1 )

Figure 16.4 Local coordinates, shape functions and local derivatives for the linear quadrilateral

element.

Linear quadrilateral element in two dimensions

The local coordinates, the related shape functions and
the local derivatives are shown in Fig. 16.4 for the lin-
ear quadrilateral element. While for this element the
Jacobian J (16-19) is in general space-dependent, the
gravity vector (16-21) in local coordinates takes the

special form
ol {eo!
e e, (&)

Similarly to the above triangular element, we can com-
pute the integral functions H,, H, at the corner nodes
m for the linear quadrilateral element as

(16-37)

Le.(-1)(3p1 +p2)

Hy(-1,-1) = Hy = —ze

H(1,-1) = Hey = 1e(-1)(p1+3p2)
o (16-38a)
He(1,1) = Hey = Z‘-’g(l)(3P3+P4)

1 ..
He(=1,1) = Hey = —3e:(1)(p3+3pa)

Hy(-1,=1) = Hyy = e, (-DGp1+p)
Hy(1,-1) = Hyy = —ge,(DGp2+ p3)
A (16-38b)
Ho(1,1) = Hyy = Ze,(D(p2+ 3p3)

Hy(11) = Hyy = Sey (-D(p1+3p0)
The gravity term (16-24) written in local coordinates
yields
aéHa}
8"1H"I

QN Hy + 8N, Hyy + 0, Ny Hyy + 0, N, Hy }
0, N\Hyy + 0, N,H, , + 0, NyH, 3 + 0, N,H, 4

Pe )

_ { (16-39)
_ l{eg(—n(l—n>(51+£’2>+eg(1)<1+n)<53+54>}
Heg(-1)(1=8)(P1+pa) + ey (N1 +E)(p2+p3)

For the linear quadrilateral element the consistent
approximation (16-39) can be in recognized as the con-
sistent formulation previously introduced by Voss?,
where the gravity term is averaged in a directional



manner, so for instance

Ny = %(1,§,n)(|+c) N,
Ny = 36(140) o,
Ny = in(1+g) 0N,y
O: N,
Ny = 3(1-E-m(1-0) e
Ny = 3801-0) %els
| 0:N,

N = 3n(1-0)

. ) l{eg(lxﬁwén
PETEED T2 (s )
davo N =300 o,
La+o Gt = (1’ ocN,
0 8Ny = 5(1+0) o,
do-o eN=50-0 o,
Li-o Oals :(1) o,

0 8N, = 31-0)
0N

} (16-40)

Figure 16.5 Local coordinates, shape functions and local derivatives for the linear pentahedral element.

Linear pentahedral (triangular prismatic) element
in three dimensions

The pentahedral element and its local functions are
shown in Fig. 16.5. Specifying the Jacobian J (16-19)
the gravity vector (16-21) is in local coordinates

€ eg(C)
enr = en(C) (16-41)
€ e(;({} n)

The integral functions He, H,, H, at the corner nodes
m for the linear pentahedral element are then

H,(0,0,1) = Hy,
H(1,0,1) = Hy,

He(0,1,1) = Hesy

H(0,0,-1) = H, =

H,(1,0,~1) = Hys

H,(0,1,-1) = Hyq

H,(0,0,1) = H,,
H,(1,0,1) = Hy,
H,(0,1,1) = H,,

H,(0,0,-1) = H,,
H,(1,0,-1) = Hy;

H,(0,1,-1) = Hyg

=0

1 .
= ye:(D(p1+p2)
=0
0

= Je-D(pa+ p3)

=0
=0
=0
I
= 3en(D(p1+p3)

=0
=0

= Jea(-1)(Pa+po)

=5;0-g-m)
1
= 5&
1
= 3n
D P
=—50-&-n)
-1
= _2(!3
1
n
(16-42a)
(16-42b)
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1 .
H(0,0,1) = Hyy = 7e,(0,0)(3p1 +pa)

H(1,0,1) = H,

1ec(1,0)3p2 + p3)
H(0,1,1) = Hey = 76,0, D(3p3 + po)
HL(0,0,-1) = Hyy = —3¢(0,0)(p1 +3p)
H(1,0,-1) = Heg = —3ec(1,0)(p2+3p3)

1 N -
H((0,1,-1) = Heg = *Zez;(o, 1)(p3+3pe)

Ny = H1-9(1-m(+0)
Ny = 3(1+91-m(1+0)
Ny = F1+E)A+m)(1+0)
Ny = 5181+ m(1+0)
Ny = 3(1-5)(1-m)(1-0)
No = 3(1+5)(1-)(1-0)
Ny = g1+ 1)1 -0
Ny = 3(1-)(1+m(1-0)

(16-42¢)

BN, = —§(1-m(1 +0)
AN, = (1 -1 +Q)
0N, = é(1+n)(1+§)

8§N4 = —é(l +m)(1+0)
0Ny = —(1-m(1-0)
1

HI-m(1-0)
O.N, =

1m0 -0)

0Ny = (1 +m)(1-0)

o5
=
Il

S
=
Il

o,y =

S5
=
[

41901+

00040

= H1+9(1+0)

1-90+0)
1
41-90-0)

0 00-0)

= 21+91-0)

F1-90-0)

oM, = 3(1-9)(1-m)
0N, = 3(1+8)(1-)
0Ny = 3(1+8)(1+1)
0N, = g(1-5)(1+)
0Ny = —5(1-8)(1 )

0N, = —5(1+8)(1-)
0N, = —é(l +E)1+M)

0Ny = —5(1-8)(1 +m)

Figure 16.6 Local coordinates, shape functions and local derivatives for the linear hexahedral element.

Linear hexahedral (brick) element in three dimen-

sions

The hexahedral element and its local functions are dis-

played in Fig. 16.6.

The gravity vector (16-21) for this element is in local

coordinates

€

e

€

ec(n,0)
e &0
eg(E.n n

(16-43)

The integral functions He, H,, H, at the corner nodes
m for the linear hexahedral element can be derived as



H(-1,-1,1) = Hy,
Hy(1,-1,1) = H,,
H,(1,1,1) = Hy,
Hy(-1,1,1) = Hy,
Hy(~1,-1,-1) = Hg

Hy(1,-1,-1) = Hyg

H(1,1,-1) = Hy; =

He(=1,1,-1) = Hgg

H (-1,-1,1) = Hy,

H(1,-1,1) = Hy, =

Hy(1,1,1) = Hy,
H,(-1,1,1) = H,,
Hy(-1,-1,-1) = Hy;
H,(1,-1,-1) = Hyg
H(1,1,-1) = H,,

Hy(-1,1,-1) = Hyg

_ ,}‘eé(fl, 1)(3p1 +p2)
_ J‘fz(‘l’ D(p1+3p2)
- %ei(l’ 1)(3p3+ pa)

= —}‘eé(l, 1)(ps+3p4)
_ ,ieé(fl,—l)(SF}s*f;s)
- ‘l‘ei(71,71)(55+3f>6)
Lee1,-)Gpr + py)

1

= —ze:(L=D)(p7+3ps)

1 .
= 261, DGpi+p4a)

2y (L D3P+ p3)

- ien(l, 1)(p2+3p3)

= Jen(L 1)1+ 3py)

- ,%en(fl,fl)(ﬂn*f)s)
_%en(1,_1)(356+57)

- ien(l,—l)(f)eﬂﬁv)

1 - -
= zen (1 =D(ps +3ps)

Hy(-1,-1,1) = H,, = ieg(—l,—l)(fvp;ﬁr;)s)
H(1,-1,1) = Hy = Jec(,-D(3p2+ o)
H(1,1,1) = Hyy = }‘eg(l, D(3ps+p7)
H(-1,1,1) = Hyy = Jec-1 D3P+ py)
(16-44a) 1 o (16-44c)
Hy(-1,~1,-1) = Hgs = —ze.(~1,~D)(p1 +3ps)

| L
Hy(1,-1,-1) = Hyg = —ze (1.=1)(p2+3p5)

1 - -
H[;(], 1,-1) = H;7 = *Zez;(la ) (p3+3p7)

1 ~ ~
HQ(*ly L-1) = Hgs = *Zeg(*la 1)(pa+3ps)

For the hexahedral (brick) element the consistent for-
mulation of the gravity term in form of the integral
functions H, H,, H, (cf. (16-44a), (16-44b) and (16-
44c), respectively), is equivalent to the formulation
given by Leijnse'’. This should be exemplified for the
pe; -component of the gravity term:

(16-44b)

8

pes = 3 0N, Hy, = glec-1, (1 =11+ Q)P+ p2) +
" e+ O +p+ [ (16-49)
+ey(-1,=D(1=m)(1 = ) (ps+pe) +

e (1,-1)(1+1)(1 =) (p7 +ps)]

16.4.2 Continuous consistent veloci-
ties

The computation of the consistent velocities (16-28)
is performed elementwise in a standard manner, i.e.,

FEFLOW | 297



298 | White Papers - Vol. |

(B Hep)ON,, (&M, €)
Vo=KL TSy H, )0, N, (B G (16-46)

(hyy Hy)O N, (8 €)

by using (16-21)

€m0 = J-e (16-47)

for the local gravity component in evaluating the nodal
integral functions Hy,p H o He oy according to (16-
35a)-(16-35b), (16-38a)-(16-38b), (16-42a)-(16-42c)
and (16-44a)-(16-44c). In (16-47) and (16-46) the Jaco-
bian J and the global derivatives
V() = g Ve n o) are evaluated at the Gauss
points p for each element e.

The element-by-element technique (16-46) leads
naturally to a consistent velocity field, which is in gen-
eral discontinuous at the nodes m . To obtain continu-
ous velocities a local smoothing technique such as
described in the Appendix B can be easily applied.
Obviously, the smoothing procedure has no effect on
the consistency of the velocity. Since the velocities
v; _, n for each element e are always consistent at the
node m an element-patch-averaged velocity
v,, = 3 v,/n, must be consistent too.

e

16.5 Examples

16.5.1 Hydrostatic condition in a

closed porous box

Let us consider a rectangular closed domain as
shown in Fig. 16.7. At initial time a stable saltwater
layer with a salinity (concentration) of C = C, exists
below freshwater with C = C, = 0 separated by a hor-
izontal sharp interface in the middle of the domain. The
domain is impervious with respect to both the flow and
the mass transport. The fluid density contrast o
defined by

PPy .
a =———=" with p,=p(C,), p, = p(C,)

o

(16-48)

amounts to a value of 0.03.



K=10"ms
c=¢C,=0

initial saltwater interface

40 m
|

o = 0.03
c=c,
D, = 10" m’s™ =
¢ =03 5
|
— X\
20m

Figure 16.7 Cross-sectional view of the initially strat-
ified saltwater below freshwater problem in a closed
porous box.

The problem is hydrostatic over all times and the
fluid motion within the box should be zero or, in the
numerical sense, negligibly small. Due to the molecu-
lar diffusion D, the saltwater mixes and the initially
sharp saltwater interface (narrow transition zone)
spreads in time. This process must be independent of

the density effect. Accordingly, we have to compare the
results of the saltwater interface spreading for the case
without density coupling against the cases, where den-
sity effects are included. As a reference solution we
compute the problem for a.=0 based on a fine tempo-
ral and spatial discretization.

We simulated the density-dependent problem for quad-
rilateral and triangular meshes both in two and three
dimensions by using the different velocity approxima-
tions. The findings are practically the same to that
depicted in Fig. 16.8 for the two-dimensional quadrilat-
eral elements.

The new formulation for the consistent velocity
approximation by the Frolkovic-Knabner method
agrees very well with the reference solution. We tested
both without dispersion (B, = B, = 0) and with dis-
persion effects (B, = 5m, B = 0.5m ). The results are
identical. In contrast, the old formulation which is
based on a locally smoothed nonconsistent velocity
approximation gives erroneous results in form of a
smeared density profile depart from the reference solu-
tion. Expectedly, this effects increases if dispersion
(B, = 5m, B, = 0.5m) is taken into account.

It is obvious the old formulation computes spurious
local velocities at the interface nodes which lead to an
artificially increased spreading of the salinity which
has an effect similar to numerical dispersion. It
becomes clear if we magnify the local velocities of the
interface node at beginning of the simulation as illus-
trated in Fig. 16.9. The old formulation gives spurious
velocities at the local points of the interface in the order
of about 10° mdfl, while outside the interface the
nodal velocities are very small in order of only
10 ' md" . In contrast, the velocities for the new for-
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mulation remain generally small in all points of the type of problem.
domain in the order of about 10 md ' , which repre-
sents the numerical noise in the velocity field for this

1.0 e B s )
0.8 - b
— 06 | 4
o
2
‘B
&
Q
kS
(5]
B
= 04t -
2
reference solution
(no density coupling, o = 0)
o——o0 new formulation
(without and with dispersion)
02 &—=a old formulation without s
dispersion
v——= old formulation with
dispersion
0.0 T 1 . 1
20 10 0 -10 -20

Figure 16.8 Computed density profiles p(x, z),x = 10m, 20m <z <-20m attime ¢ = 10° days

for different solutions using quadrilateral elements: Reference solution is obtained without density
effects for a fine vertical mesh; the other solutions are simulated on an uniform 32x64 mesh of
quadrilateral elements: new formulation represents the Frolkovic-Knabner algorithm for consis-
tent velocities combined with local smoothing, old formulation is the local smoothing of the basi-
cally nonconsistent velocities.
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old formulation

new formulation

Figure 16.9 Local velocities at the saltwater interface computed by the old versus the new formulation.

16.5.2 The Elder problem revisited

The Elder problem describes a free convection pro-
cess in a vertical cross-section which is extensively
studied in past by various authors in using different
numerical methods!»>¢1%11:21 Tt is defined in Fig. 16.10
with respect to a saline problem type so as basically
proposed by Voss and Souza?'.

300 m

c=c¢,
s

150 m

symmetric half I
model domain I

d=

-
o

l 600 m

Figure 16.10 Definition of the two-dimensional Elder prob-
lem and the used symmetric half model domain.

The Elder problem is studied for a (solutal) Rayleigh
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number Ra = 400, where Ra is defined as

o-K-d

R =
a €D,

(16-49)

(for more details see for instance®'#).

Recently, Frolkovic and De Schepper!® presented
new results for the Elder problem. They achieved grid
convergence by a systematical refinement of the mesh
for the symmetric half of the domain (Fig. 16.10) using
a grid level | in the range of 4 to 8. For an uniform dis-
cretization by quadrilateral elements the number of ele-
ments of the half domain is given by

(16-50)

Frolkovic and De Schepper’s findings have been con-
firmed by FEFLOW computations, however, based on
the old formulation of the velocity approximation,
where grid levels between 4 and 9 were applied. Now,
it is interesting to see the effect of the new formulation
of the consistent velocity approximation on these
results. A comparison between the two formulations is
shown in Fig. 16.11 for the Elder problem at a grid
level / = 7. As seen there are only slight differences in
the salinity and streamline patterns which have practi-
cally no effect on the history of the cellular convection
process. This means the numerical quality of the veloc-
ity field for the old and the new formulation is effi-
ciently the same for a problem where the density
contrast (say Rayleigh number Ra) is moderate.

new formulation

old formulation

t=2.5y

t=10y

t=20y

Figure 16.11 Old versus new formulation of the velocity
approximation for the Elder problem at grid level / = 7:
salinities (0.2, 0.4, 0.6 and 0.8 isolines) and streamline pat-
terns for different times ¢ .



16.5.3 The saltpool problem

The saltpool problem has been introduced by
Oswald'®. Tt represents a three-dimensional saltwater
upconing process in a cubic laboratory box under the
influence on density and hydrodynamic dispersion. A
stable layering of saltwater below freshwater is consid-
ered in time for two cases of density: (1) Jlow density of
1% mass fraction and (2) high density of 10% mass
fraction. The problem is defined in Fig. 16.12 and the
parameters are listed in Tab. 16.1. A cube of side length
0.2 m is filled with a homogeneous porous medium of
porosity €. At initial time saltwater is layered below
freshwater forming a horizontal narrow transition zone.
The cubic box is recharged with freshwater through a
single inflow hole at a constant rate Q. Through the
outflow hole water discharges with a variable salinity.
An important outcome of the laboratory experiments
are the breakthrough curves of salinity at the outflow
hole. It is a challenging task? to model these break-
through behavior.

The problem is difficult caused by very small dis-
persivities B,, p; and a high density contrast particu-
larly for the high density case with a 10% mass fraction
of saltwater. Salinity-dependent viscosity effects* have
to be taken into account too. The mixing concentration
at the outflow is measured at a small magnitude
amounting in the order to li and IL related to maxi-
mum salinity C_ for the low and the high density case,
respectively.

outflow O

iV p 0
a
a

freshwater P,

- saltwater P

0.06 m

Hy=0.14m
| — | —»|
\ s
\
AY
\
AY
AY
\
b - — - — = —|=-==
H=02m

Hy

|- |\
B=02m

Figure 16.12 Definition of the saltpool problem.

The saltpool problem has been modeled by various
authors>'®!° with different success. The best agree-
ments with the measurements have been recently
achieved by Johannsen et al.'®, who used the above
new formulation for the consistent velocity approxima-
tion in the d° 'f'code, and additionally, however, adjusted
some parameters within accepted bounds. It was shown
that very fine meshes (up to about 17 million nodal
points) are required to model the high density case with
a sufficient accuracy. A hierarchy of regular meshes
consisting of hexahedral elements up to grid level
[ = 8 has been studied, where the number of elements
is

ne = 8§ (16-51)

In the present simulation we employ meshes of only
moderate sizes as listed in Tab. 16.2. Both a structured
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mesh of hexahedral elements with a grid level of 6 and
an unstructured mesh of pentahedral elements for only
the symmetric half which is partially refined at the out-
let are simulated. For the computations the Galerkin-
FEM without any upwind and the Adams-Bashforth/

trapezoid rule with adaptive time stepping and one-step
Newton are applied, that means the numerical results
will be second order accurate both spatially and tempo-
rarily.

Table 16.1 Parameters of the saltpool problem

magnitude
quantity symbol low density high density unit
cell height H 0.2 m
cell width B 0.2 m
cell depth D 0.2 m
opening width a 10° m
initial freshwater height H, 0.14 m
initial saltwater height H, 0.06 m
hydraulic conductivity kiig 97.73-107" ms |
0
solute expansion coefficient (relative | o = Ps~Po 76.0-10"* 735.0 - 10" 1
density difference) Po
diffusion coefficient D, 1.0-10° m’s |
longitudinal dispersivity Br 12-10° m
transverse dispersivity Br 12-10° m
porosity 0.372 1
fluid compressibility S, 0.0 m
inflow/outflow rate 0 1.89-10° 1.83-10°° mj sill
0.163296 0.158112 m-d
variable fluid viscosity* W= (14 1.850 410+ 44507
o = C/p, mass fraction
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Table 16.2 Used meshes for the saltpool problem

type view close-up at the outlet mesh characteristic
regular mesh, hexahedral elements,
2D-view, level /=6 ne® = 262,144
2 np? = 274,625
A

3D-view

P &

h,©=3.125 mm
hy4=3.125 mm
h,®=3.125 mm
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Table 16.2 Used meshes for the saltpool problem (continued)

type view close-up at the outlet mesh characteristic
Irregular mesh, pentahedral elements,
2D-view, symmetric half ne =262,912
np = 140,010
B h, =3.125 mm
a hy = 0.552 mm
h, = 3.125 mm

3D-view

|
Al

a. total number of elements
b. total number of nodes

c. characteristic horizontal element length in the central region
d. characteristic horizontal element length at outflow/inflow boundaries

e. characteristic vertical element length

The old formulation of the velocity approximation
(local smoothing of nonconsistent velocities) com-
pletely failed in the saltpool problem for the high den-
sity case. This was already observed by Oswald et al.'
where the saltwater mixing concentration at the outlet
was significantly overestimated in this case. Such a bad
behavior is depicted in Fig. 16.13 showing an overesti-

mation of more than 20 times with respect to the exper-
imental salinity for the high density case at the outlet if
using the old formulation with the mesh A. On the
other hand, the low density case agrees quite well with
the experiments if using the old formulation as seen in
Fig. 16.13.



0.6 T T T

e——e experiment, high density

05 — simulated, high density B

&——= experiment, low density
simulated, low density

04

03

salt mass fraction [%)

0.1

0 50 100 150
time [min]

Figure 16.13 Salinity breakthrough curves at the outlet for
the high and low density cases: Measured versus simulated
salinities for mesh A based on the old formulation of the
velocity approximation.

In using the new consistent velocity approximation
the computed breakthrough curves are now in reason-
able agreement with the experiments as shown in Figs.
16.14 and 16.15 for both the low and the high density
case. We note that the parameters are not adjusted dur-
ing the present simulations. Apparently, an adjustment
of the parameters, particularly the transverse dispersiv-
ity B, porosity & and conductivity K, is required to
attain a better match with the experiments so as per-
formed by Johannsen et al.'®. Otherwise, for the high
density case more refined meshes seem to be necessary
to improve the breakthrough behavior at the outlet.

0.06 : I I

e——e experiment
e——o mesh A, quad., level 6
mesh B, trian., halfspace

0.05 -

salt mass fraction [%]

0.00 &= L L L
0

50 100 150
time [min]

Figure 16.14 Salinity breakthrough curves at the outlet for
the low density case: Measured versus simulated salinities
for mesh A and B based on the new formulation of the con-
sistent velocity approximation.

0.06 T T T

0.05 - B

e——e experiment
0.04 o——o mesh A, quad., level 6
mesh B, trian., halfspace

salt mass fraction [%)]

0.02 B

0.01 B

0.00 d=f L L ;
0 50 100 150
time [min]
Figure 16.15 Salinity breakthrough curves at the outlet for
the high density case: Measured versus simulated salinities
for mesh A and B based on the new formulation of the con-

sistent velocity approximation.
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Figure 16.16 illustrates the salinity distributions
computed by using the new consistent velocity approx-
imation for the low and the high density cases. It
reveals the role of the density effects in the mixing and
dilution of saltwater controlled mainly by hydrody-
namic dispersion. If the case of the high density the
transition zone between saline and fresh water is signif-
icantly widened forming a ’diffusive upcone’ below the
outlet, however, at very low concentrations. This mix-
ing process is significantly influenced by the advective
and dispersive forces acting locally at the saltwater-
freshwater interface which is initially very narrow. A
highly accurate and a fully consistent velocity approxi-
mation has proven a fundamental requirement for a
successful solution of the saltpool problem at high den-
sity. Small local inconsistencies in the velocity field
would have dramatic consequences on the computa-
tional results.



low density high density

Figure 16.16 Cross-sectional salinity (above) and 50% salinity isosurface (below) at # = 160 min for the low and high
density case simulated by the new formulation of the consistent velocity approximation (mesh A).
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16.6 Closure

For density-dependent flow and transport processes
a new formulation of a consistent velocity approxima-
tions developed by Frolkovic® and Knabner'? is incor-
porated in the FEFLOW code. This became necessary
to eliminate errors for high density contrasts arising
distinctly in simulating the saltpool problem. The old
formulation which is based on a smoothing technique
of basically nonconsistent velocities can give lacks in
the consistency of velocities at locations of high den-
sity gradients. For the saltpool problem at high density
it has shown dramatic consequences in the results.
Though the saltpool problem is somewhat specific and
extreme the new technique is to be recommended (and
actually now the default option) for all further density-
dependent problems.

The question arises why the lack in the old formula-
tion was not noticed in previous studies (¢f.,>®). The
answer becomes clear in the light of the above compar-
isons made between the old and the new formulation:
Most of the previous studies focussed on moderate
density effects and flow situations which are different
to that of the saltpool problem where a dispersion-con-
trolled flushing over a narrow transition zone is domi-
nant. Otherwise we should mention that reliable
quantitative results for a saltwater mixing process
under density effects were not available before
Oswald’s work'3.

The recomputation of density-dependent problems
gives under moderate parameter conditions no remark-
able differences between the old and the new formula-
tions so as exemplified above for the Elder problem
where the results are in close agreement in both formu-

lations with the recent findings presented by Frolkovic
and De Schepper!®. However, if the density contrasts
are much higher and mixing processes over stable nar-
row saltwater-freshwater transition zones are important
only the new formulation of an exact local consistency
can guarantee a quantitatively (and physically) correct
solution.
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Appendix A

Nomenclature

Latin symbols

CC, ML concentration and reference
concentration (salinity),
respectively;

C ML73 maximum concentration;

c L’ specific heat capacity of fluid;

D L’r! tensor of mechanical dispersion;

D, 7! molecular diffusion in the porous
medium;

Ef, E 1’71 internal (thermal) energy density for
fluid and solid, respectively;

e 1 gravitational unit vector with respect
to global coordinates;

€m0 1 gravitational unit vector with respect
to local coordinates;

fu 1 fluid viscosity relation function;
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H., H,, H,

X, YV, Z

ML
1!
ML 7!
3,1
MLT

ML

LT

L

gravity vector in global coordinate
directions;

gravitational acceleration;

integral functions related to local
coordinates;

hydraulic (piezometric) head,
unit vector;

Jacobian transformation matrix;
Fickian mass flux vector;

Fourierian thermal

vector;

energy flux

tensor of hydraulic conductivity;
tensor of permeability for the porous
medium;

grid level;

mass matrix;

finite element shape function;

finite element shape function at node
m;

number of elements;

number of nodes (points);

number of nodal contributions at an
element patch;

fluid pressure;

fluid discharge;

bulk fluid flow sink/source;
bulk mass sink/source;
bulk thermal sink/source;
storage coefficient;

temperature and reference

temperature, respectively;
time;

Darcy velocity (flux) vector;
global Cartesian coordinates;

o 1

i o
BBr L

€ 1

0

A

R

W, W, ML

Ps P, ML

P 1

o’ ML

&En.C L

®

Q

o) 1

0. L
-1

2 L

v L
-1

Veno L

—1,.2

RHS vector;
elevation above a reference datum,;

solutal expansion coefficient;
thermal expansion coefficient;

longitudinal and transverse

dispersivity, respectively;
porosity;
variable;

MLT® ' tensor of thermal hydrodynamic

dispersion of fluid phase;

MLT® " thermal conductivity for fluid and

solid, respectively;

dynamic viscosity and reference
dynamic  viscosity of  fluid,
respectively;

fluid density and reference fluid
density, respectively;

relative fluid density (= (p-p,)/p,) ;
solid density;

local coordinates;

functional;

domain;

mass fraction;

partial differentiation with respect to
the global z -coordinate (z %) ;
partial differentiation with respect to
the local & -coordinate (z a%) ;
Nabla (vector) operator with respect
to global coordinates;

Nabla (vector) operator with respect
to local coordinates;



Subscripts

m, n nodal indices;

0 reference value;

p Gauss-point related,

X, ¥,z global coordinate directions;
&n, ¢ local coordinate directions;

Superscripts

e element;
fluid (water) phase;
s solid phase;

Appendix B

Global smoothing (projection) of dis-
continuous velocities

A global approximation of the smoothed Darcy
velocities can be written as

v(x,y,z) = Zvam (B1)
m

Assume that we have an unsmoothed (discontinuous)
velocity field v*(x, y, z) , where either nonconsistent or
consistent velocities occur. Then the smooth function
which provides a best fit in the least squares sense over
the domain Q can be obtained from a minimization of
the functional

2 .
® = [(v—v*)" = Min (B2)
Q
The minimization procedure

0D ov

2 — [y )X = f =1.2. .. (B

v I (v—v )6vm 0 or m=1,2,.. (B3)
Q

or

ij(v—v*) =0 (B4)
Q

results in a system of linear equations to solve the
smoothed (continuous) velocities v, viz.,

M, = Z, (BS)
n

where M, represents the mass matrix and Z,, is the
RHS involving the unsmoothed relations. They are
formed in the finite element assembling procedure as

M,, = [N,N, (B6)
Q

and, by inserting the Darcy velocity components writ-
ten for the hydraulic head # from (16-2), as

Zm = .[va* = _.[Nm[KfH’(Vh+‘;e)] (B7)
Q Q

Note, the least square approximation of global smooth-
ing (B7) is equivalent to a Galerkin weighting
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procedure??,

A cost-effective alternative appears if the mass
matrix M, , is lumped by an row-sum or diagonal scal-
ing

M

[NAEND =
mn ) Q o (B8)

0

without need to solve the linear equation system (B5).
Mass lumping can be shown to be equivalent to an
area-weighted averaging for nodal values.

Local smoothing (projection) of dis-
continuous velocities

Unlike global smoothing, there is an efficient way
to smooth velocity fields by using only individual ele-
ment information. This is termed as local smoothing!?
and provides a simple nodal averaging based on the
number of elements joined at a given node of an ele-
ment patch. Among several approaches suggested
FEFLOW employs following two-step local technique:

(Step 1) The discontinuous velocity in each element e

v = —K°fy - (Vh+pe) (B9)

is computed at the Gauss points p with given approxi-
mations for the head # and density p = p(C, T) at ele-
ment level e. Note, the velocity (B9) can also be
computed in a consistent approximation as described

above (cf. (16-40)).

(Step 2) The values at the Gauss points are assigned to
the nearest corner node p — m. Each nodal contribu-
tion is summed up and, at the end, the nodal values are
averaged by their number of nodal contributions n
from the patch sharing the node m

patch
_ e
v, = z V|1,
e

p

(B10)



Coupled groundwater flow and transport: Ther-
mohaline and 3D convection systems

H.-J. G. Diersch® & O. Kolditz°
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ABSTRACT A 1 L/d aspect ratio.
This work continues the analysis of variable density flow in B Ji buoyancy ratio (Turner number).
groundwater systems. It focuses on both thermohaline (dou- -3 .
ble-diffusive) and 3D buoyancy-driven convection pro- G CU ML concentrat}on and. reference
cesses. The finite-element method is utilized to tackle these 3 concentration, respectively.
complex nonlinear problems in two and three dimensions. C 5 ML maximum concentration.
The preferred numerical approaches are discussed regarding Cf , & L2 T—2®—1 specific heat capacity of fluid and
appropriate basic formulations, balance-consistent discreti- solid, respectively.
zation techniques for derivative quantities, extension of the 2 1 . . .
Boussinesq approximation, proper constraint conditions, D d L'r medium molecular diffusion
time marching schemes, and computational strategies for coefficient of fluid.
solving large systems. Applications are presented for the D, i 1! tensor of hydrodynamic dispersion.
thermohaline Elder and salt dome problem as well as for the d ’ L thickness (height).
3D extension of the Elder problem with and without thermo-
haline effects and a 3D Bénard convection process. The sim- € L extent.
ulations are performed by using the package FEFLOW. e 1 components of the gravitational unit
Conclusions are drawn with respect to numerical efforts and vector.
the appropriateness for practical needs. fu ] constitutive  viscosity  relation
Key words: porous media, variable density flow, finite ele- i func‘.tlot?. .
ment method, double-diffusive convection, thermohaline g LT gravitational acceleration.
convec-tion, three-dimensional Bénard convection h L hydraulic head.

1 1 e/ L symmetric intrusion ratio.

K L7 isotropic  hydraulic  conductivity

Nomenclature constant.
K, L7 tensor of hydraulic conductivity.
Latin symbols k; L’ tensor of permeability.
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L L length. I,T, ® temperature and reference
Le ] Lewis number. 1 temperature, respectively.
N, 1 basis (shape) function at node m. V{I LT q/,lfI,f absolute specific Darcy fluid
n; 1 normal unit vector (positive flux.
outward). w,w, spa.tial. weighting function and
pf ML'T2 fluid pressure. we1ghtt1.ng1 function at node m,
O¢ MLT" sink/source of contaminant mass. . z:esiec.lve Y dinat Euleri
Qlé M1 lumped balance flux of solute i artesian - cooranares, wenan
A spatial coordinate vector.
(positive inward).
Orp 7! extended Boussinesq approximation
Greek symbols
term.
0r ML™'T sink/source of heat. _
Ql; MLAT lumped balance flux of heat o 1 fluid density difference ratio.
(positive inward). op,0p L longitudinal and transverse
Q}? 7! sink/source of fluid. B B thermodispersivity, respectively.
qc ML T prescribed normal boundary mass B © fluid expansion coefficient.
flux (positive outward). Br.Br L coefficients of longitudinal and
q/-[ L7} Darcy flux of fluid. transve.rse dispersivity of solute,
;(de M7 normal component of the conductive respectively.
part of the heat flux (positive r boundary.
outward). Y 1 error tolerance measure.
i 2. - -3 . .
qi';p ML 2T normal component of the dispersive AC ML concentration difference.
part of the mass flux (positive AT ® temperature difference.
outward). At T time step width at time plane n.
total 2.1 . n
ne ML T~ normal component of the convective c Ji porosity.
plus dispersive part of the mass flux 9 7! chemical decav rate
(positive outward). 2, -1 . y L
1 A LT thermal diffusivity.
y, LT normal component of the Darcy N MLT 0" ¢ hvdrod )
fluid flux (positive outward). ij tensor . o. ydrodynamic
. . . thermodispersion.
R, R, 1 specific retardation factor and its cond 3 .
time derivative, respectively. kg.”p MLT . ®_1 tensor of thermal conductivity. .
Rag, Ra, 1 solutal and thermal Rayleigh 7Lij MLT"® t;:nsor . ,Of mechanical
number, respectively. £os 3 _lt ermodlsperswn: ) )
Ra, ] critical Rayleigh number. X, A MLT ~© the.rmal conc.luct1v1ty for fluid and
-1 . . solid, respectively.
S, L specific storage coefficient I 1

-2 . . L
(compressibility). w,u, ML T~ dynamic fluid viscosity and
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Subscripts

Superscripts

S VR B NI

reference viscosity, respectively.
fluid density and reference density,
respectively.

solid density.
(T-150)/100
temperature, 7'in °C .

normalized

linear (Henry) or nonlinear
(Freundlich, Langmuir) sorptivity
function.

c/ p/ " mass fraction.

domain.

spatial Eulerian coordinate
(Einstein’s summation convention).

direction of gravity in the Cartesian
coordinate system.

nodal points (Einstein’s summation
convention).

time plane or normal direction.
reference value.
Gauss point.

finite element.

fluid phase.

predictor value.

prescribed boundary value.

solid phase.

17.1 Introduction

Thermohaline (or double-diffusive) convection pro-
cesses are connected with the presence of heteroge-
neous temperature and concentration fields. Thus,
convective currents can arise from heat and salinity
gradients acting simultaneously (e.g., Nield>*, Rubin®,
Rubin and Roth®, Tyvand”, Trevisan and Bejan’,
Murray and Chen®?, Shen®’, Angirasa and Srinivasan?,
Nield and Bejan, Brandt and Fernando’). Geophysical
applications of thermohaline models can be found for
instance in the field of geothermics and waste disposal
in salt formations (Evans and Nunn?*). Thermohaline
effects are important for the production of mineralized
thermal water, the reinjection of cooled brine into
heated deep aquifers connected with geothermal supply
technologies, and groundwater movement near salt
domes.

Usually, the phenomena of double-diffusive con-
vection (DDC) are related to the presence of both (1) at
least, two properties (substances, thermal energy) strat-
ifying the fluid and having different diffusivities and
(2) opposing effects on the vertical density gradient’.
Accordingly, different regimes can be distinguished: A
diffusive regime occurs if the destabilizing potential
comes from the property with the larger diffusivity,
e.g., a stable salinity gradient is heated from below. On
the other hand, a finger regime exists if the driving
(destabilizing) forces are caused by the more slowly
diffusing property, e.g. hot saline fluid on top of a sta-
ble temperature gradient. Both regimes can also appear
in a differentiated form referred here to as a mixed
DDC regime if both properties can destabilize and
affect the fluid during the temporal development, e.g., a
heavy cool solute sinks down to a region which is
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heated from below, so a finger regime at the beginning
converges more to a diffusive regime over time.

The first part of the paper by Kolditz et al.** mainly
focused on the verification of numerical schemes
against available benchmarks for density-coupled con-
vection processes. Established test examples (e.g., the
Henry problem, Elder problem, and salt dome prob-
lem) are only 2D and single-diffusive (either mass or
heat-driven) convection processes. But even for these
academic, seemingly simplistic 2D problems a number
of discrepancies appear, still for most recent findings>.
It has been shown*® that numerical schemes with their
spatial and temporal resolutions can essentially influ-
ence computational results. Figure 17.1 recalls the con-
tradictory results for the Elder problem as well as the
salt dome test case obtained by different authors. While
Elder® and the recomputation done by Voss and
Souza’ used obviously overdiffusive schemes on rela-
tively coarse grids, newer findings*3 with refined
spatial and temporal discretizations reveal convection
pattern which are distinctly different from former
work. The flow field indicates now a central upwelling
rather than downwelling. More dramatically, Olden-
burg and Pruess™ recently presented new results for the
salt dome problem (HYDROCOIN level 1 case 5).
They believed to achieve much more accurate solutions
for this example. But, their results are fully outside of
all results known to date (Fig. 17.1b). All the more,
their ’swept forward-type’ solutions are suspiciously
very near to the pure freshwater case without any den-
sity coupling, so TOUGH2’s results become widely
questionable for problems involving velocity-depen-
dent dispersion effects. A possible reason for this dis-
crepancy is recently indicated by the work of Konikow
et al.*. They showed that a salinity pattern of a swept

forward type appears if constrained boundary condi-
tions for the salt dome interface are applied (allowing
only dispersive release of brine and precluding any
convective release of brine). While the study by Koni-
kow et al.* is more physically motivated it also gives
an indication of the importance of a mathematically
(numerically) correct handling of boundary conditions
for this type of problems, independently of their physi-
cal appropriateness or not.

In the past, Galerkin methods, finite differences
(FDM) and finite element methods (FEM) have been
employed to solve the nonlinear coupled balance equa-
tions for variable density groundwater problems in 2D.
Pinder and Cooper®’ used the method of characteristics.
Finite elements based on a primitive u-v-p-variable for-
mulation are utilized by Segol et al.®®, Huyakorn and
Taylor’® and Diersch'>!'*!5, However, the subsequent
works desisted from primitive variable approaches
because their increased accuracy was shown to be in
disproportion to the increased numerical effort and
inherent restrictions in formulating boundary condi-
tions. Accordingly, standard formulations succeeded
which are based on substituting the Darcy law in the
primary balance equations. Recent works devoted to
this subject are presented, among others, by Frind®,
Diersch et al.', Voss and Souza’”, Diersch!’, Hassani-
zadeh and Leijnse3!, Herbert et al’?, Galeati et al.?,
Schincariol et al.®, Fan and Kahawita?, Oldenburg
and Pruess®, Croucher and O’Sullivan'?, Zhang and
Schwartz”, and Kolditz*>. On the other hand, three-
dimensional applications are related to field problems
as given by Huyakorn et al*®, Kakinuma et al*® and
Xue et al.”® and do not consider rigorously the density
coupling mechanisms. However, there are prior theo-
retical and numerical works in three-dimensional free



convection problems mostly focused on the (cavity)
Horton-Rogers-Lapwood (HRL) problem>* presented
by Holst and Aziz**, Zebib and Kassoy’®, Straus and
Schubert®7°, Horne*®, Schubert and Straus®, Caltagi-

a)

b)
[ P—— -
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— 7
\ 227"
-100 2o/ 4

-200

300 bz ‘
0 300 §00 900

rone et al.’, Chan and Banerjee?, and Beukema and
Bruin®.

Figure 17.1 a) Simulated concentration pattern at 20 years for the Elder problem with a Rayleigh number of 400:
(left) results obtained by the SUTRA simulator (Voss and Souza’), (solid curves) and by Elder? (dashed curves),
and (right) computed by the FEFLOW simulator in agreement with the results attained by ROCKFLOW and
TOUGH?2 as discussed by Kolditz et al.*}, and b) salt dome test case: (left) TOUGH2 results> against (right)
FEFLOW (and ROCKFLOW) findings*® for steady-state with results®® against (right) FEFLOW (and ROCK-
FLOW) findings* for steady-state with mechanical dispersion of B ; =20mand B, =2m.

It is obvious from the above that the extension to
thermohaline and/or 3D density-coupled convection
problems will significantly increase the importance of
both getting a physically equivalent process description
in the discretized models and overcoming the numeri-
cal burden, particularly if aiming at practical problems.

In the following, relevant numerical aspects are dis-
cussed in the context of the FEM. The developed solu-
tion strategies are implemented in the 3D finite-
element simulator FEFLOW?°, FEFLOW is employed
to study 2D and 3D, thermohaline and buoyancy-
driven convection problems from various perspectives.
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First, we expand the 2D Elder and salt dome problems
to thermohaline processes in order to study thermal
influences on groundwater-brine flow systems. Second,
we extend the original Elder problem to 3D for both
single-diffusive (solutal) and double-diffusive (thermo-
haline) convection processes to analyze the evolution
of 3D pattern formations in comparison with the 2D
counterparts. Finally, we devote to a Bénard problem as
an example of more complex 3D multicellular convec-
tion in a porous layer. The presented results for thermo-
haline and solutal convection systems may provide
examples for a comparison analysis in 2D and 3D by
using alternative approaches.

17.2 Basic Equations

The governing equations for the coupled mass and
heat transport in groundwater (saturated porous
medium) are derived from the basic conservation prin-
ciples for mass, linear momentum, and energy*. The
following nonlinear system finally results?®??> which
has to be solved in two and three dimensions

oh 5%(
oat Ox;

/- K}fu[ah p/p;o j]

= 0, +0pp(C.T) (17-1)

(17-2)

ocC

vax +R9C = O

f(RC)+7( lc-p,

divergent form

6C 0 (17-3)
8t ’8x ( ”6 +(R9+Q )¢ = Q¢
convective form
6T oT 0o
(ep/e+ (1599’15 + o/ ST - ( /&) 0T

=QT

To close the set of balance equations the following con-
stitutive formulations are additionally needed:
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R remren (GRS (LA
/ ky; g
=24y K, =12 = [Pf(cs)fpfa]/p;
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My = AT 0 = e/ Ot (1-6)p°0)

d“p = PJLJ|: SU"’ (o, — ar)q 6],

cond __
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[er+(1-e)'13,

]
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As seen a hydraulic-head-conductivity-(h-K)-form
of the Darcy equation (17-2), instead of the pressure-
permeability-(p-k)-form, is preferred in FEFLOW
which usually permits more convenient formulations of
boundary conditions and parameter relations for appli-



cations in subsurface hydrology. As the result, the ten-
sor of hydraulic conductivity X;; refers to the reference
density p/ and the reference v1sc0s1ty p, , which are,
on the other hand, related to the proper reference condi-
tions for the concentration C, and the temperature T, .
For such a formulation a viscosity relation function f, ,
in eqn (17-5), appears to include viscosity effects in
Darcy’s law (17-2). The following constitutive polyno-
mial expression is used

v

W

1+1850)(C c) 410)(C C)+44503(C c,) (17-6)
1+1.85m— 4103 +4450)

1 +0.7063¢ — 0.04832¢°
14070636 7~ 7, ~ 0.04832¢%_ 7

which is a combination of empirical relationships given
by Lever and Jackson®® for high-concentration saltwa-
ter and by Mercer and Pinder® for geothermal pro-
cesses in the range between 0 and 300 °C. In practice,
the expansion coefficients o and B of eqn (17-5) are in
the most cases considered as constant>*. For the present
investigations we shall also use this assumption to
maintain an unified parameter basis for comparison
purposes. However, it should be mentioned in a geo-
thermal context where large temperature variations
occur and buoyancy forces are dominant, this approach
is often not appropriate’®. Based on the theoretical
framework done by Perrochet’* FEFLOW is also capa-
ble of handling a nonlinear variable thermal expansion
B(T) in form of a 5th order polynomial to match the
fluid density variation over a wide temperature range

with a high accuracy and to satisfy the zero condition
(density anomaly) at 4 °C. For more details see
Diersch?2.

The divergent form and the convective form of the
contaminant mass transport equation (17-3) (the energy
balance equation (17-4) has already been led to a con-
vective form after introducing the temperature) are
physically equivalent. Commonly, the convective form
of the transport equation is preferred for numerical
approximations because simpler boundary-value prob-
lems are accessible.

It is known?®* the Boussinesq approximation
becomes insufficient for large density variations (e.g.,
at high-concentration brines or high-temperature gradi-
ents). The main difference between the Boussinesq
approximation and the actual balance quantities is
expressed by the additional term Q.5(C, T) in the con-
tinuity equation (17-1) according to

Opp(C.T) = — S(LG—C*Ba—D

(C,—C,) ot 0
! (17-7)
_ qf( o Qg;gfﬁgz_
i (C,—Cy)ox; " ox;
2

which is neglected if the Boussinesq approximation is
assumed. The first term in eqn (17-7) can be omitted if
the temporal changes in concentration and/or tempera-
ture vanish. However, even the evolving features of a
convection process may be thoroughly affected at
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higher density contrasts (problems of bifurcation, phys-
ical instability and hydrodynamic pattern formation).
The second term of eqn (17-7) can be ignored if the
density gradient is essentially orthogonal to the veloc-
ity vector. This is quite often not a tolerable assump-
tion. Note, the expression (17-7) has to be modified in
the case a nonlinear variable thermal expansion B(T) ?.

17.3 Spatial Discretization

The above equations (17-1) to (17-4) are discretized
by the FEM using bilinear or biquadratic elements for
2D, and prismatic pentahedral trilinear or hexahedral
trilinear and triquadratic elements for 3D. Finally, it
yields the following coupled matrix system:

Oh+S(h,C,T)h = F(h,q,C,C, T, T)
Aq = B(h,C, T)
P(C)C+D(q,C)C = R(C)

UT+L(q, T)T = W(T)

(17-8)

where h, ¢, C and T represent the resulting vectors of
nodal hydraulic head, Darcy fluxes, contaminant con-
centration and temperature, respectively. The super-
posed dot means differentiation with respect to time ¢.
The matrices S, 4, O, P and U are symmetric and
sparse, while D and L are unsymmetric and sparse. The
remaining vectors F, B, R and W encompass the right-
hand sides (RHS) of eqns (17-1) to (17-4), respectively.
The main functional dependence is shown in parenthe-
sis.

The individual finite-element formulations of the
matrix system (17-8) as realized in FEFLOW are sum-

marized in Appendix A. Note, different formulations
result for the divergent and the convective forms of the
transport equations. Though physically equivalent,
they can deliver different numerical solutions due to
their different boundary-value formulations.

Another point of view is related to the numerical
evaluation of the Darcy fluxes ¢ for a given discretiza-
tion. The success of a numerical solution for variable
density flow problems is essentially dependent on an
appropriate choice of suitable schemes for computing
derivative quantities from the Darcy equation.

17.4 Continuous Approxima-
tion of Velocity Fields

The substitution of Darcy fluxes (17-2) in the conti-
nuity equation (17-1) gives immediately an equation to
determine the unknown hydraulic head A according to
the weak formulation (A3) in Appendix A. If & is
known and assuming initial C and T distributions, the
fluxes ¢ can be directly computed via Darcy’s equation
(17-2). However, a careful handling of derivative quan-
tities is required. As normally done in FEM, piecewise
continuous (C°) basis functions N,, (Appendix A) for
the hydraulic head & generate velocity fields ¢ (using
derivatives of hydraulic head) that exhibit discontinui-
ties across element boundaries. It results in nonunique
values at nodal points. Particularly for buoyancy-influ-
enced flows, discontinuous (nonunique) velocities can
cause difficulties (spurious vertical velocities) in the
numerical solution due to inappropriate balance
approximation of the lower order term 0h/0x;, behav-
ing constantly in an element for the case of linear basis
functions, and the higher order gravitational term



[ p/ (C,T)- p/;]/ ,» varying linearly in an element for
linear basis functions, of the RHS of Darcy equation
(17-2). This has already been addressed in previous
works??3275 and different numerical schemes were pro-
posed to overcome these problems.

Voss and Souza’® preferred for the SUTRA code in
2D a reduced order approximation of the buoyancy
term, actually the concentration is averaged in every
element, therefore, the pressure gradient and the con-
centration distribution have the same spatial variability,
practically constant (for linear basis functions). This is
called a consistent velocity evaluation. Leijnse*
showed that such a consistent velocity approximation
can be interpreted as an average of the local gravity
component in the local directions of a finite element. A
generalization of this spatial averaging has been
recently presented by Knabner and Frolkovic*.
Instead of reducing the approximations Herbert et al.3?
introduced a mixed interpolation strategy in NAMMU
for 2D, where the pressure is approximated by qua-
dratic elements to obtain a linearly distributed pressure
gradient which becomes consistent with a linear distri-
bution of the concentration-dependent buoyancy term.
Clearly, quadratic basis functions increase the compu-
tational expense and, especially for 3D, an alternative
approach is preferable.

Taking into consideration that the discretized bal-
ance terms of the conservation equations provide gen-
erally a different spatial variability (compare the
’diffusion’ term against the ’convective’ term or a
’reactive’ term), a consistent approximation by the
FEM means that all terms have to be rigorously
weighted at nodal points. As the result, unique values
of even discontinuous variables are generated at nodal

points. This principle is consequently applied also to
the velocity evaluation and leads to approaches
referred to as smoothing techniques used in FEFLOW
for the present analysis. Lee et al.*3 thoroughly dis-
cussed both global and local smoothing techniques for
derivative quantities. In this light, the weak form of the
Darcy equation (A4) in Appendix A can be recognized
as a global smoothing procedure which was introduced
in the water resources literature by Yeh?’. Today,
smoothing techniques have an additional meaning for
adaptive methods to compute higher order solutions for
an error estimation?'. Appendix B summarizes the
smoothing techniques available in FEFLOW and
appropriate for the present simulations of coupled phe-
nomena. While global derivative smoothing schemes
with a consistent mass matrix require a higher numeri-
cal effort, lumped mass smoothing algorithms as well
as simpler local smoothing schemes are the most cost-
effective approaches and have shown to be well-suited
for the present class of problems. The latter is to be rec-
ommended for large 3D problems.

Smoothed velocities of a higher-order approxima-
tion lead to a continuous distribution of all velocity
components in a mesh. As a consequence, continuous
fields also exist along material interfaces, e.g., between
media with different hydraulic conductivities, where an
interfacial nodal point shares these different media and,
naturally, a weighted average of the flux quantities
results. Leijnse* pointed out that physically unrealistic
results can be obtained for cases where the conductiv-
ity in adjacent elements differ by more than two orders
of magnitude. Indeed, if utilizing such continuous
velocity fields from a mesh having an insufficiently
adapted interface discretization particle tracking proce-
dures can lead to poor results if starting pathlines near
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such an interface location (a particle may effectively be
propagated into media with low hydraulic conductiv-
ity). On the other hand, a discontinuous velocity field
approximation often gives significant problems when a
particle crosses an element. Then, particle can be
’caught’ in the interface due to components which have
opposite directions across an element edge as indicated
by Sauter and Beusen®?, who introduced special transi-
tion elements with interpolated (smoothed) velocity
properties to overcome these difficulties. As the sum,
the higher-order approximation of continuous veloci-
ties is the most natural approach in the finite element
method and need not any ad-hoc techniques in adapt-
ing interface conditions, provided, however, the inter-
face is appropriately discretized. The necessity for a
continuous flow field approximation also in the context
of modeling heterogeneous media is thoroughly dis-
cussed in the work about mixed hybrid finite element
techniques presented by Mosé et al’' followed by
recent discussions given by Cordes and Kinzelbach!!
and Ackerer et al..

17.5 Constraints and Related
Budget Analysis

Constraints of boundary conditions can play an
important role in practical modeling of variable density
transport. Typically in saltwater enroachment prob-
lems, the boundary conditions of freshwater and salt-
water are dependent on the in/outflowing
characteristics essential to a correct mathematical for-
mulation. However, most prior works?6:32-38:44:35,66.75 djd
not consider such conditions in a rigorous manner. To
identify the problem let us consider, for instance, the
salt dome flow problem as schematized in Fig. 17.2.

effluent water with unknown concentration C

444

entering freshwater C = CII? =0

TX XX e

aquifer

Figure 17.2 Application of transport constraints for saltwa-
ter intrusion in flowing groundwater over a salt dome.

Alternating boundary concentrations appear on the
top boundary depending on the dynamic process. As
long as water enters the domain it should have a pre-
scribed concentration of freshwater. However, if the
water leaves the domain (along the same upper bound-
ary) the concentration on this boundary is unknown
and should be computed. Such a description can be eas-
ily realized if the entire boundary section is assigned by
a freshwater boundary condition of 1st kind (C = C}f ),
and at the same time, the boundary will be imposed by
a constraint condition in form of a null minimum mass
flux Qrgm' =0. Such an arrangement guarantees that
the freshwater condition remains valid as long as the
convective mass flux, being concentration-dependent
due to the density variation, points into the domain.

A rigorous handling of such constraints is permitted
by a prescription of complementary conditions for each
boundary type**??. For instance, the minimum and
maximum constraints of a Dirichlet-type concentration
will lead to additional conditions in the followin% form
(it reads: the imposed boundary condition C = C|(¢) is



accepted only if the related mass balance flux QC (and
the related hydraulic head " ) is within given min-max
bounds, if not, these bounds have to be used as new
boundary conditions, where the boundary type has to
be changed from a 1st kind into a flux-type boundary
condition of a point sink/source O)

R max,

Oc<0Qc (1)
and

min,

Istkind CY(r) only if 08> 0" (1)

and
hm[hl < /1R < hnmx.
else set Q. as an intermediate flux-type condition according to: (1 7'9)

max,

. R max, min R max
or™ () if {QCZQC () and K" <h®<h }

QC = min ””n\ min R max
oc (1) if QCSQ( and h 'Sk <h

min,

0 it (h"<h™™ or K>

max,
v
s

where Qlé is the mass balance flux at the boundary
point to be computed while the le condition is
. max] mml . .

imposed, O~ and Q- = denote the prescribed time-
dependent maximum and minimum bounds, respec-
tively, and Q. represents a singular mass sink/source
to be set at the boundary point (node) instead of the
original 1st kind boundary condition. Similar expres-
sions exist for the other types of boundary conditions.
This procedure allows the control of concentration at
the boundary in dependence on both the balanced flow
conditions through the boundary (e.g., Q'gm' =0) and
the location of possible free-surface conditions within
the bounds A", A" . The latter is very important for
complex mine flooding processes as studied by Diersch

etall.

The computed fluxes Qlé represent lumped
(summed-up) mass balance fluxes at nodal points

¢ = -[a¢ (17-10)

Note, the balance quantities are defined positive
inward on I". Actually, the specific balance fluxes q]é
are composed by their convective and dispersive parts
according to

R R R

qc = Cq”h - D . (17-11)
— i
convective

dispersive

In practice, it has been shown to be inappropriate to
include the total (convective plus dispersive) flux into
the procedure of controlling the constraint conditions
because the direction of dispersive fluxes is ambiguous
(e.g., the dispersive spreading also occurs against the
flow direction). Accordingly, the balance-based evalua-
tion of fluxes is exclusively related to the convective
mass fluxes:

= ,ch *J(C q,) (17-12)

giving unambiguously directional balance quantities.
Similar expressions can be obtained for the balance of
convective heat flux, viz.,
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o~ (o’ éfTRqﬁ,,)

r

(17-13)

The computation of the convective part of balance
fluxes at each controlling (nodal) point is performed
via a budget analysis in a postprocessing step. The
basic formulation used for computing the above bal-
ance quantities is derived in Appendix C.

17.6 Temporal Discretization
and Iterative Solution
Process

In general, for more complex flow processes it can-
not be predicted which time steps are allowable with
respect to the accuracy requirements. Accordingly, a
predefined time step marching strategy is often inap-
propriate and inefficient. Alternatively, stable fully
implicit and semi-implicit two-step techniques known
as the GLS-(Gresho-Lee-Sani) predictor-corrector time
integrator®3® with automatically controlled time step-
ping of first order by the Forward Euler/Backward
Euler (FE/BE) and of second order by the Adams-
Bashforth/Trapezoid Rule (AB/TR) have proven to be
powerful and accurate strategies, especially for strong
nonlinearities and complex situations. At each time
step, the convergence tolerance y directly governs the
time-step size. It provides a cost-effective method in
that the step size is increased whenever possible and
decreased only when necessary due to the error esti-
mates. The GLS scheme is thoroughly described
elsewhere®!”1%30, Here, we will only address modified
features which are important in the context of the mul-
tiple coupling of equations and constraint computation

for the present tasks. Note, a full Newton method is
embedded into the AB/TR and FE/BE predictor-correc-
tor methods. The overall adaptive solution process is
outlined in Fig. 17.3.

L

Rosetten all intermediate constraint conditions

Constraint loop
Solving flow equati

| Does flow violate constraints? Ii

]
Adapting 3D finite element mesh I

I
Restart X
. i Time step control for flow errors

transport eq

| Does contaminant transport violate constraints? |7

l-g - - - i Time step control for contaminant transport errors |
| Solving heat transport eq |<
1
| Does heat transport violate constraints? :

<- CECECEEI -ITime step control for heat transport errors

Solving c

Time loop

Figure 17.3 Adaptive strategy for coupled transient flow,
mass and heat transport.

Denoting the time plane by the subscript # and the
variable time step width by Az, the coupled matrix sys-
tem (17-8) is solved in the following 22 raw working
steps:



(Step 0) Compute the initial acceleration vectors h,,,
C, and T, for n = 0 (once per problem)

Oil" F(hnﬂ Cn’ Tn)fs(hnﬂ Cn’ Tn)hn
r(c,)¢, = r(C,)-D(h,, C,, T,)C, (17-14)

UTH W(Tn)_L(hm Cm Tn)Tn

and guess an initial time step A, .

(Step 1) Perform explicit predictor solutions by using
the AB and FE algorithm, respectively:

W,y = Fap(At, Aty By 1)

C5+1 :fAB(AtW At, |, Cn, Cn—l) (17-152)

T, = fis(At, Aty Ty Ty t)

h‘ZJrl = fBE(Afn, hn)
Ch.\ = feu(az, G) (17-15b)

TZ+ 1= fBE(Atn’ Tn)
The detailed description of the functions f,,()and

fze() can be found in Gresho er al*, BixlerS, and
Diersch!™!8,

(Step 2) Do corrector solution for the flow equation
achieved by the TR and BE scheme, respectively:

20
(E-*-S(hZH,CZH,TZH))hnH (17-16a)

~

2 . . .

= O(Zh, ) + U, € T g, 6 )

n
0

(Z s, € 0 ) (17-16b)

o0

n+1
= Ehn+F(hil7+1’ Cf,:+1, Iﬁ+1aqn7 C}’l» Tl’l)

n

(Step 3) If constraint conditions are violated update the
matrix system (17-16a), (17-16b) for the new flow
boundary values and restart the flow solution with step
2. If all constraint limits are satisfied continue with step
4.

(Step 4) Solve Darcy equation:

Aq, . = B(h, ., Cfﬂrl’ Tfrﬂ) (17-17)

(Step 5) Update the new accelerations vectors by
’inverting’ the TR and BE, respectively:

. 2 .
hl’l+1 = Al‘n(thrlihn)ihn
(17-18)

1
hycy = =, —h,)
n

(Step 6) Compute the local truncation error of the
approximate flow equation for the AB/TR and FE/BE
scheme, respectively:
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flow h’1+17h£+1
dn+l =
Atn 1
3(1+ At -+ (17-19)
Sl 1
dn?rwi = E(hn+|*h5+|)

(Step 7) Predict the potential new time step length from
the error estimates of the flow equation:

Tow 1/x
flow — Atn(—-—y—-—.lowj (17-20)
n+tl

where k is 3 for the AB/TR and 2 for the FE/BE
scheme, vy is a wuser-specified error tolerance
(y = 10107 is typical), and || -| is a norm to be
chosen as the weighted RMS

dﬂaw

n+1

1 [ 1 NI
= |5 =3 i+ 1)~ Hiny) (17-21)
|:NP hmax i i(n+1) i(n)

)

I’l

[2}'(

A7 D(‘In+1’Ci+1)+Jp(CIZ+1)]Cn+1 =

[P( wi1)

where JP(C‘Z +1) 1s the partial (tangential) Jacobian
matrix based on the predictor which results from the
embodied full Newton approach. Its specific expres-
sions depend on the divergent and convective form of
the used transport equation as given by Diersch!”.

+D(qn+1,c’,i+1)+1p<cﬁﬂ>jc

P(C’Z.)

or, alternatively, as the maximum norm

max i 1)~ hin)
_ 17-22
: (17-22)

max

dflow

n+1

in which NP is the total number of points and 4,,,,
corresponds to the maximum value of the hydraulic
head.

(Step 8) Tactics for acceptance of the predicted new
time step: If the flow solution does not satisfy the pre-
scribed accuracy the time step is reduced by using
appropriate formulae'”'® and the flow solution is
restarted with step 2. Otherwise, if the accuracy is sat-
isfied the solution process is continued with step 9.

(Step 9) Perform corrector solution for the mass trans-
port equation achieved by the TR and BE scheme,
respectively:

P(C,. ) C, +C) +I(CL NCL +R(C), )

(17-23)

——C,+J,(C,. NC,  +R(C, )

(Step 10) If mass constraint conditions are violated
update the matrix system (17-23) for the new mass
boundary values and restart the mass solution with step
9. Otherwise, continue with step 11.



(Step 11) Update the new acceleration vectors C,, |
for the concentration similar to step 5.

(Step 12) Equivalently to step 6 compute the local trun-
cation error of mass transport d, ., based on
(Cn +17 Cl/; + 1) .

(Step 13) Estimate the potential new time step from the
mass transport computatlon ALY similar to step 7 by
using the error d,, ¢ .

n+1 >

(YL, . T 0T,

(Step 14) Accuracy check of mass transport: reject the
current mass transport solution and restart at step 2
with a reduced time width A¢, if the required accuracy
could not be satisfied. Otherwise, continue with the
heat transport solution at step 15.

(Step 15) Perform corrector solution for the heat trans-
port equation accomplished by the TR and BE scheme,
respectively:

U(AitnTnﬁ-Tn)+J (T, . )T, +W(T,, )

A n

" (17-24)
U VW i ZE Y i 7
(S + L@ T )+ I D) Ty = Tyt I(To T+ AT, L)

(Step 16) If heat constraint conditions are violated
update the matrix system (17-24) for the new heat
boundary values and restart the heat transport solution
with step 15. Otherwise, continue with step 17.

(Step 17) Update the new accelerations vectors T, - |
for the temperature similar to step 5.

(Step 18) Compute the local truncation error of heat
transport d +| basedon (T,, - T., ).

(Step 19) Estimate the potentlal new time step from the
heat transport computatlon Atn N 1 , similar to step 7 by
employing the error d, ff

(Step 20) Accuracy check of heat transport: reject the
current heat transport solution and restart with step 2

for a reduced time step if the required accuracy could
not be satisfied. Otherwise, continue with step 21.

(Step 21) Determine the new time step length

mass heat

At = min(ALT AL AL (17-25)

n+1

and restart the time loop with step 1 as long as the final
time is not reached.

As seen above a constraint violation can lead to
recycling steps around the matrix solution process for
flow, mass and heat transport. The matrix updating
gains efficiency if a total reassembly can be avoided.
Such a procedure of constraint feedback is generally
not restricted in the number of loops. Normally, if con-
straint conditions are raised two recycles become suffi-

FEFLOW | 329



330 | White Papers - Vol. |

cient.

To solve the resulting large sparse matrix systems
((17-14), (17-16a), (17-16b), (17-17), (17-23), (17-24))
appropriate iterative solvers for symmetric and unsym-
metric equations have to be applied3. For the symmet-
ric positive definite flow equations the conjugate
gradient (CG) method? is successful provided a useful
preconditioning is applied. Standard preconditioner
such as the incomplete factorization (IF) technique®
and alternatively a modified incomplete factorization
(MIF) technique* based on the Gustafsson algorithm
are used. Different alternatives are available for the
CG-like solution of the unsymmetric transport equa-
tions: a restarted ORTHOMIN® (orthogonalization-
minimization) method, a restarted GMRES®' (general-
ized minimal residual) technique and Lanczos-type
methods*””!, such as CGS® (conjugate gradient
square), BICGSTAB™ (bi-conjugate gradient stable)
and BiCGSTABP (postconditioned bi-conjugate gra-
dient stable). For preconditioning an incomplete Crout
decomposition scheme is currently applied. Com-
monly, BICGSTABP is the first choice in our practical
simulation of large problems.

17.7 Examples of 2D Thermo-
haline Systems

17.7.1 Dimensionless parameters

From a dimensional analysis of the governing bal-
ance equations one can derive the following dimen-
sionless parameters™ to characterize the convection
processes:

solutal Rayleigh number Ra_:

o

— % __ AC-K-d
Ra - GG (17-26)
s e-D,
thermal Rayleigh number Ra, :
— f s
Rat=B~AT~K~d Azsk +(1f8)7n (17-27)
A o
Lewis number Le :
A
Le = -~y (17-28)
Buoyancy ratio (Turner number) B :
a
- -AC
B=-—_90 (17-29)
B-AT

Accordingly, the relation between the solutal and ther-
mal Rayleigh number is given by

Ra;, = B-Le- Ra, (17-30)

From perturbation analysis along the thermohaline
Horton-Rogers-Lapwood (HRL) problem* the critical
Rayleigh number Ra_ is composed of solutal and ther-
mal influences. It can be shown for the HRL problem
that boundary between stable and instable convection
possesses a straight line, viz.,



Ra, = Ra,+ Ra, (17-31)

The critical Rayleigh number Ra,. depends on bound-
ary conditions, geometry and anisotropy. A first critical
number Ra,, describes the onset of convection in the
form of stable stationary rolls which is normally given
by 47” . Further increase of the Rayleigh number leads
to a second critical stage characterized by Ra,,. For
this regime no more stationary conditions exist and
fluctuating (oscillatory) transient convective patterns
appear. Ra,, is only known from numerical
studies®>-3738:65 where a value of about 390 is reported.
For 3D cases it has been found the final convective
structures are dependent on the initial conditions. Sta-
ble convection could be recognized only if raised as 2D
roll cells. Otherwise, the 3D state has found to be insta-
ble from the beginning’® as soon above criticality.

17.7.2 The 2D thermohaline Elder
problem

17.7.2.1 Definition of the problem

The 2D saline Elder problem* is expanded to a
thermohaline convection process if the salinity field is
augmented by a thermal distribution as defined in Fig.
17.4. The geometry is given by the aspect ratio
A = L/d of 4 and a so-called intrusion ratio / = e/L
of 0.5. While the homogeneous aquifer is permanently
heated from below, the salinity gradient acts from
above. The normalized concentration on the top of the
aquifer is greater than zero in the central section. On
the bottom of the aquifer the salinity is held at zero. On

the other hand, the top and bottom boundaries are held
at constant temperatures as indicated in Fig. 17.4. Oth-
erwise, all remaining boundary portions are considered
impervious for solute and adiabatic (insulated) for heat.
All boundaries are impervious for fluid flow. As a ref-
erence for the hydraulic head a single boundary value
of h = 0 has to be set at one node (normally in the cen-
tre of the mesh). The used model parameters are sum-
marized in Tab.17.1.

As stated above, such a formulation of the thermo-
haline Elder problem can be considered as a mixed
DDC regime where a finger regime dominates at the
beginning (cool salinity sinks down) and later a more
diffusive regime occurs (downsunk salinity is heated
from below).

oC -0 e=300m oC 0

= = - — =

Ox5 Cc=1 0x3
IS o
Il =0 T=0 T=0 Il

- Ae —

[ 13 [ ~
glE 1= Qs
clc Cc=0,T=1 SIS
X3

o L=600m o

X

Figure 17.4 Definition of the 2D thermohaline Elder prob-
lem (modified from Voss and Souza’?).
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Table 17.1 Simulation parameters for the 2D

thermohaline Elder problem

Table 17.1 Simulation parameters for the 2D
thermohaline Elder problem (continued)

Symbol Quantity Value Unit
Symbol Quantity Value Unit AT |temperature differ- 400, 200, K
ence 133.3, 100,
A aspect ratio 4. 1 0
B | buoyancy ratio 1,2,3,4,5 1 a; |longitudinal ther- 0. m
(Turner number) modispersivity
N
Co refe.rence concen- 0. gl oy | transverse thermo- 0. m
tration dispersivity
" f : 6 -3 -1 =
cf p/’ gle.ré’nal capacity of 4.2-10 Im~ K a/C, |density ratio 02 1
ui
§ longitudinal disper- 0. m
D, |moleculardiffusion | 3.565 10 m? 57! L sivity of solute
coefficient
- - By |transverse disper- 0. m
d thickness (height) 150 m sivity of solute
e extent of intrusion 300 m B thermal expansion 5.10% K!
fu | Viscosity relation 1 1 coefficient
function € porosity 0.1 1
1 |symmetric intru- 0.5 1 A |thermal diffusivity | 3.565-107 | m?s’!
sion ratio - 1 1 -1
z T »/ | thermal conductiv- 0.65 Jm™ s K
K hydraulic conduc- | 4.753 - 10 ms’ ity of fluid
tivity - o
2% | thermal conductiv- 1.591 Jm' s K
L length 600 m ity of solid
Le |Lewis number 1 1
Ra, |solutal Rayleigh 400 1
number
Ra, |thermal Rayleigh 400, 200, 1
number 133.3, 100,
80
T, reference tempera- 0. K

ture




mesh A

mesh B

Figure 17.5 Finite element meshes used: mesh A consisting of 4400 element and 4539 nodes, refined mesh B

with 9900 elements and 10108 nodes.

The finite element meshes as shown in Fig. 17.5
which have proven to be capable of attaining conver-
gent solutions for the Elder problem*® are also used for
following investigations.

17.7.2.2 Results and discussion

The basis for comparison is the thermohaline simu-
lation for the pure saline free convection, i.e. Ra, = 0
and B = «, as presented in the first part of this paper®.
It meets the best numerical approximation available for
this case: divergent formulation of the mass transport
equation, extended Boussinesq approximation, Galer-
kin-FEM, and predictor-corrector AB/TR time inte%ra-
tor. As the convergence tolerance y a value of 10 ~ is
used both for head #, salinity C and temperature T
based on a RMS error norm (cf- eqn (17-21)).

To study the growing influence of thermohaline
convection more in detail we consider the computa-
tional results using mesh A for decreasing buoyancy

ratios B = «, 5, 4, 3, 2 as exhibited in a series of Fig.
17.6. While the results for B = 5 (Fig. 17.6b) are still
rather similar to the pure (asymptotic) saline convec-
tion at B = o (Fig. 17.6a), beginning with B = 4 the
influence of the superimposing thermal convection on
the salinity distribution becomes apparent (Figs. 17.6c¢-
e). There are no more monotonic changes in the salinity
pattern. Surprisingly, salinity distributions reveal asym-
metric characteristics at longer times when the influ-
ence of thermal convection becomes stronger as seen at
B =2in Fig. 17.6e.

To check the influence of spatial resolution the
computations are repeated with the refined mesh B.
The long-term salinity pattern for small buoyancy
ratios are illustrated in Fig. 17.7. Now, symmetric
salinity distributions appear for B = 4 (Fig. 17.7a) and
B =2 (Fig. 17.7b). A comparison with the coarser mesh
counterparts of Fig. 17.6 reveals further qualitative
changes in the pattern evolution. The case with an equi-
librium of solutal and thermal buoyancy effects for B =
1 (Fig. 17.7¢c) gives again asymmetric distributions of
salinity. Note, the effective Rayleigh number is here
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already 800 (Ra = Ra + Ra,) where transient distur-
bances should take influence. However, there is appar-
ently no physical reason for a broken symmetry and
mesh effects are likely responsible for such an asym-
metric evolution. It is obvious, at sufficiently high Ray-
leigh numbers each initially small disturbance which is
not perfectly symmetric can evoke asymmetry which
grows over a longer period. Moreover, in the numerical
solution process such disturbances can be caused, e.g.,
by inappropriate spatial discretizations, remaining
errors in solving the matrix systems by iterative tech-
niques or roundoff errors arising in computing the
physically instable process. On the other hand, in a
physical experiment or in real sites the trigger of asym-
metry may be an initially disturbed distribution or due
to nonhomogeneous materials.

It seems that the numerical solutions reflect the
physical instabilities which is most apparent for the
thermohaline system if the solutal and thermal effects
are nearly equilibrated (B = 1). It becomes obvious that
modeling of such unstable thermohaline systems will
be very expensive, especially in 3D.

Finally, Fig. 17.8 presents both the simulated tem-
perature and salinity distributions for the case of B = 4.
It demonstrates how the salinity evolution in a thermo-
haline convection process is related to specific pattern
formations of the temperature field.
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Figure 17.6 Influence of thermohaline convection: com-
puted salinity distributions of 0.2 and 0.6 normalized
isochlors at 1, 2, 4, 10, 15, and 20 years (from left to
right) for different buoyancy ratios (a) B = «, (b) B=15,
(c) B=4,(d) B=3, and (e) B =2 by using mesh A.
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Figure 17.7 Mesh effects: computed salinity distributions
of 0.2 and 0.6 normalized isochlors at 10, 15, and 20 years
(from left to right) for different buoyancy ratios (a) B = 4,
(b) B=2, and (c) B =1 by using mesh B.
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Figure 17.8 Computed distributions of salinity and temper-
ature at several times for B = 4 using mesh A.
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17.7.3 The 2D thermohaline salt dome
problem

17.7.3.1 Definition of the problem

The considered test case is an idealization of the
flow over a salt dome3>#»4355 where the geometry is
greatly simplified. The geometry and boundary condi-
tions used are shown in Fig. 17.9. The cross section of
the model extends horizontally 900 m and vertically
300 m having an aspect ratio 4 of 3. The aquifer is
considered to be homogeneous and isotropic. The
hydraulic head varies linearly on the top of the aquifer.
All remaining boundaries are impervious to flow. The
salinity on the top is taken equal to zero (freshwater)
over the entire boundary. Additionally, a minimum
mass flux constraint condition of QZM] =0 is imposed.
It controls that the freshwater condition is only valid if
the flow enters the domain. The middle section of the
aquifer base represents the cap of the salt dome having
a relative salt concentration equal to unity. The thermo-
haline extension of the salt dome problem concerns a
superimposition of a thermal gradient acting upward
and it tends to destabilize the brine pool due to the aris-
ing buoyant forces. Accordingly, the bottom of the
aquifer is assigned by a constant normalized tempera-
ture of 7 = 1, while the top boundary is imposed by a
normalized temperature of zero (7 = 0). Again, the
upper boundary is additionally constrained by a mini-
mum heat flux of zero Qn;m’ =0 which permits a con-
trol of the boundary conditions for inflowing and
outflowing situations. The side walls of the domain are
regarded as impervious for solute mass and adiabatic
(insulated) for heat. The model parameters are summa-
rized in Tab. 17.2. According to the DDC classification

as stated above, the formulation of the thermohaline
salt dome problem is one of a diffusive regime where
the buoyancy force is caused by heat, which has a
larger diffusivity than salt.

h=h, Mh:hb

T=C=0 constrained by O™ = 07" =0

outflow:

inflow: C=0 % =0 I
0x5

{ S

&‘»?
Il = < IS
- Il
RIS =1 Cc=1,7=1 =1 QlE

2 @ |
X3 i
4 oc oc
= = =0 A =0
Y ox, B e=300m o, B
L=900m o

Figure 17.9 Definition of the 2D thermohaline salt dome
problem (modified from Herbert et al.*?).

Table 17.2 Simulation parameters for the 2D
thermohaline salt dome problem

Symbol Quantity Value Unit
A aspect ratio 3 1
B buoyancy ratio 2,3,5 1
(Turner number)
C, |reference concen- 0. g 1!
tration
i pf thermal capacity of 42-10° Jm3K!
fluid
csps thermal capacity of | 2.52- 10° Jm3K!
solid




Table 17.2 Simulation parameters for the 2D
thermohaline salt dome problem (continued)

Table 17.2 Simulation parameters for the 2D
thermohaline salt dome problem (continued)

Symbol Quantity Value Unit Symbol Quantity Value Unit
D, |moleculardiffusion | 1.39- 108 m?s! B thermal expansion 5-10™ K!
coefficient coefficient
d thickness (height) 300 m € porosity 0.2 1
e extent of intrusion 300 m A thermal diffusivity | 6.024 - 107 m>s!
fﬁ viscosity relation 1 1 2z thermal conductiv- 0.65 Jm!sTK!
function ity of fluid
h, hydraulic head at 10.228 m A thermal conductiv- 3. Jm!stK!
point a ity of solid
hy, hydraulic head at 0. m
point b . R .
: 1 The finite element mesh as shown in Fig. 17.10 is used
K| hydraulic conduc- 1~0985§52 : ms’ for the simulations of the thermohaline salt dome prob-
tvity 10 lem. The predictor-corrector AB/TR time integrator
Le |Lewis number 217 1 with a RMS-based convergence tolerance y of 107 is
Ra. |solutal Rayleigh 24-10° 1 applied.
number
Ra, |thermal Rayleigh 547,365,219 1
number
T, reference tempera- 1. K
ture
o; |longitudinal ther- 20. m
modispersivity
Oy |lransverse thermo- 2. m Figure 17.10 Finite element mesh used for 2D thermoha-
dispersivity line salt dome problem consisting of 1920 elements and
a/C, |density ratio 0.2036108 1 2013 nodes.
B longitudinal disper- 20. m
sivity of solute
By |transverse disper- 2. m

sivity of solute
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17.7.3.2 Results and discussion

Simulated results of the salt dome problem at a time
of 100 years for different buoyancy ratios B are shown
in Fig. 17.11. It reveals the temperature effect on the
saltwater distribution remains negligible or small if

salinity

—

sete

v T

compared with the single-diffusive results*® at higher
buoyancy ratios B. As seen for B = 2, however, if the
buoyancy ratio becomes smaller vigorous temperature
influences on the brine pattern result in form of a
"wavy’ salinity field caused by the thermal buoyancy.

temperature

S zeee 77
NEEE e m

Figure 17.11 Evolution of the thermohaline convection system: computed salinity and temperature distributions at 100
years for different buoyancy ratios (a) B =15, (b) B=3, and (c) B=2.



To illustrate how such a thermal effect on the brine
flow is evolved a series of salinity and temperature pat-
terns are outlined in Fig. 17.12 for the case of B = 2.
The *wavy’ salinity characteristics is triggered in front
of the salt wedge by thermally driven eddies. As
expected, it leads to an increased saltwater effluent on
top of the aquifer. Note, a buoyancy ratio of 2 implies
an already large temperature difference for a high-con-
centration brine and, accordingly, corresponds to an

salinity

extreme situation. It should be mentioned that for the
real site behind the present salt dome problem such
high temperatures corresponding to B = 2 may be
unlikely to occur in practice. However, the variants can
be valuable as test cases to study the effects of higher
temperatures, which may, for instance, arise in the
vicinity of a disposal facility for heat-emitting waste.

temperature

[years]

v

Pp—

i -,,
i
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) NN

Figure 17.12 Evolution of the thermohaline convection system: computed salin-
ity and temperature distributions at several times for a buoyancy ratio of B = 2.
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17.8 Examples of 3D Cellular
Convection

17.8.1 The 3D Elder problem for sin-
gle-diffusive (solutal) and double-diffu-
sive (thermohaline) convection

17.8.1.1 Definition of the problem

Originally, the Elder problem?3 refers to a 2D cross-
sectional convection process in a fluid-saturated porous
layer. As a result, only 2D roll cells can appear. Now,
the interest is focussed on adequate 3D situations. For
this purpose the Elder problem is expanded for both the
single-diffusive and double-diffusive applications in a
porous box consisting of a square base (L xL) and a
height d. This box has the same cross sections along the
Cartesian axes as defined in Fig. 17.4 for the 2D
sketch. Boundary conditions and measures are identical
to the 2D case shown in Fig. 17.4. Now, salinity is held
constant in an areal extent on top and bottom of the
porous box. The used parameters correspond to those
given in Tab. 17.1.

The box is discretized by hexahedral trilinear finite
elements as displayed in Fig. 17.13. To reduce the com-
putation effort only a quarter of the discretized domain
is actually simulated. It is based on the assumption that
symmetric planes occur for the studied range of Ray-
leigh numbers. Both AB/TR and FE/BR time marchin§
with a RMS-based convergence tolerance y of 10~
have been tested. For the long-term simulations and the

chosen spatial resolution the second-order AB/TR
scheme with a full Newton method becomes sensitive
and produces oscillations at later simulation times. On
the other hand, the first-order FE/BE scheme with full
Newton method has proven to be more stable and
robust and, therefore, it is preferred for present 3D sim-
ulations. Generally, Galerkin-FEM (i.e. no upwinding)
is used. To simulate the convection process over a
period of 100 years the FE/BE scheme takes 641 time
steps for the single-diffusive problem and 965 time
steps for the double-diffusive (thermohaline) problem
(excluding restarted steps).
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Figure 17.13 Total finite element mesh for the 3D Elder
problem: only a quarter of the mesh is actually used in the
computation. This quarter consists of 48,000 hexahedral
elements and 51,701 nodes.

17.8.1.2 Results and discussion

The 3D free convection process is similar to the 2D
counterpart, with some interesting new features. To
give more insight into the physics of the 3D convection



process Fig. 17.14 shows the evolution of salinity from
different views. The 3D cut-away images (left column
of Fig. 17.14) display the progressing fingering charac-
teristics in the 3D space. Similar to the 2D case we find
also an upwelling salinity pattern in the centre of the
box at the given time stages. The 3D influence
becomes also apparent in the two horizontal views at
an upper elevation of 0.9-4 (135 m) and the middle
horizon of 0.5 - d (75 m) as shown in Fig. 17.14. At the
beginning the quadratic geometry of the intrusion area
on top is visible in the convection pattern. Fingers
appear around the border of the intrusion area and
"blobs’ grow down at the four corners. The quadratic
pattern evolves into more complicated multicellular
formations via a number of characteristic stages. More
"blobs’ appear up to the time when the salinity reaches
the bottom. Then, the structures begin to fuse and the
pattern is completely reformed. After this phase a con-
vection pattern remains which has a characteristic diag-
onal ’star’ form. This ’star’ is a result of the geometry
of the square intrusion area. It becomes clear that the
final formations have a strong dependency on the geo-
metric relations.

An illustration of the pattern evolution in 3D space
is given in Fig. 17.15 where isosurfaces of the 50%
salinity are shown at characteristic time stages. Up to a
time of about 4 years the salinity primarily sinks down
and forms a dissected finger formation. At later time
the upper part contracts and forms the typical diagonal
’star’, while larger *blobs’ are getting fused below.
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Figure 17.14 Computed salinity patterns of the 3D Elder problem at times of
(a) 1, (b) 2, (c) 4, (d) 10, and (e) 20 years.
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Figure 17.15 Computed 3D isosurfaces of 50% salinity for the 3D Elder problem (viewing into the box from bottom to
top) at times of (a) 1, (b) 2, (¢) 4, (d) 10, (e) 15, and (f) 20 years.

The 3D thermohaline Elder problem has been simu-
lated for a buoyancy ratio of B = 5, where the solutal
Rayleigh number Ra, is again 400. The 3D distribu-
tions of the computed salinities and temperatures up to
20 years are displayed in Fig. 17.16. In contrast to the
single-diffusive formation (cf. Fig. 17.14) the salinity
pattern appears more diffusive at later times when the
temperature field affects the convection system. Then,
the thermally buoyant forces accelerate the contraction
process of the sinking salinity plume in the centre. At
the final stage, while the single-diffusive convection

provides still an upwelling flow in the centre, the ther-
mohaline convection process reveals a single down-
welling characteristics for the salinity (see Figs. 17.15
and 17.17). As seen, the most heated water is buoyantly
affected outside and around the denser salinity core,
where the isotherms come to the upper locations. These
mutual influences between salinity and temperature are
more apparent in Figs. 17.17 and 17.18 for the com-
puted isosurfaces of salinity and temperature, respec-
tively.
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Figure 17.16 Cut-away views of simulated salinity (left) and temperature
(right) distributions for the 3D thermohaline Elder problem at buoyancy

ratio of B = 5 and times of (a) 2, (b) 4, (c) 10, and (d) 20 years.

344 | White Papers - Vol. |



Figure 17.17 Computed 3D isosurfaces of 50% salinity for the 3D thermohaline Elder problem (viewing from bottom to
top) at B =5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.
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Figure 17.18 Computed 3D isosurfaces of 50% temperature for the 3D thermohaline Elder problem (viewing from top to
bottom) at B =5 and times of (a) 1, (b) 2, (c) 4, (d) 10, (e) 15, and (f) 20 years.

17.8.2 The 3D Bénard convection

17.8.2.1 Definition of the problem

Three-dimensional convective pattern formations in
domains representing a thin porous layer, i.e., for large
aspect ratios 4, can be considered as a porous medium

equivalent of Bénard convection. As Elder® studied
such a problem in 2D referred to as the ’long-heater
problem’ for a Rayleigh number of 200, an aspect ratio
A of 10, and an intrusion ratio / of 0.8. We extend this
’long-heater problem’ to 3D similar to the above Elder
problem. The remaining simulation parameters corre-
spond to that of the original Elder problem described in
the first part of this paper*’. Due to the multicellular



convection process in the porous layer a more refined
spatial discretization is needed compared with the 3D
Elder problem above. Moreover, no assumptions of
symmetry are made and, accordingly, the domain has to
be fully discretized. The finite element mesh for the
problem consists of 220,000 (100 x 100 x 22) hexahe-
dral trilinear elements containing 234,623 (101 x 101 x
23) nodes. Again, for the temporal discretization the
FE/BE predictor-corrector scheme with the full New-
ton method and a RMS-based convergence tolerance y
of 107 is applied to the simulation.

17.8.2.2 Results and discussion

The striking features of 3D Bénard convection
development are shown in Fig. 17.19. The initial
motion is characterized by a rectangular string of end-
cells, where at the four corner points the most intensive
growths of ’blobs’ can be observed. It is followed by a
growth of cells starting from the ends of the intrusion
area on top. At these times a remarkable feature of the
3D convection process is the annular roll pattern for-
mation. At smaller times the cell structures are rather
complex (Fig. 17.19b) showing the birth of subcellular
eddies both across and along the annular structure. Due
to the smaller Rayleigh number the nonroll-like pertur-
bations are smoothed at larger times and the convection
process results in a highly regular pattern of ring struc-
tures.

17.9 Closure

The finite-element method is applied to simulate
variable density flow processes in 2D and 3D ground-

water systems. The described solution strategies as
implemented in the simulator FEFLOW are more gen-
eral and are primarily developed to tackle complex
practical applications where solutal and/or thermal
density effects play an important role. However, before
more complex field situations can be studied the cho-
sen methods and codings have to be extensively tested
over a wider spectrum of this important class of nonlin-
ear problems. In this context the aim of the present
paper is mainly the proving and benchmarking of the
simulations along examples where comparable results
are available, or if not, the obtained results are to be
supposed as a comparison basis for further studies. We
have chosen the Elder and salt dome problem
(HYDROCOIN case 5 level 1) as well suited and rep-
resentative examples. They allow us both to participate
in the process of resolving partly contradictory results
given in the literature and to expand (or generalize) the
2D solutions to three dimensions and additional cou-
pling phenomena from a well-documented and
accepted source. The extensions concern thermohaline
and multicellular convection processes in 2D and 3D.
Unfortunately, to date both numerical and experimental
results of 3D and thermohaline convection are rare and
we are mostly dependent on an incremental procedure
in comparing and interpreting the results among one
another. In this context we found similarities and also
interesting new features regarding the pattern forma-
tions of the buoyancy-driven convection processes.
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Figure 17.19 Computed salinity patterns for the 3D Bénard convection problem at Rayleigh number of
200 and dimensionless times of (a) 0.013, (b) 0.026, and (¢) 0.078.
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The interaction between solutal and thermal con-
vection is studied by varying the buoyancy ratio B,
which expresses the relationship between buoyancy
forces due to solutal and thermal convection. Differ-
ences between (pure) saline convection and thermoha-
line convection become apparent for buoyancy ratios
B<5. We found asymmetric convection patterns for
buoyancy ratios near to unity. In this situation, the
hydrodynamic system becomes strongly unstable
because the solutal and thermal buoyancy effects are
nearly equilibrated. As a result, very small vertical
velocities trigger the convection process. Grid effects
indicate the physical instability. The numerical solution
of thermohaline convection systems with buoyancy
ratios near to unity requires extremely fine spatial dis-
cretizations.

Three-dimensional convection needs sufficiently
high spatial and temporal resolutions if damping mea-
sures, such as upwinding, are to be avoided. At moder-
ate Rayleigh numbers (400 for the 3D Elder problem
and 200 for the 3D Bénard convection) we used more
than 50,000 nodes for a quarter of the domain and
about 230,000 nodes for the total discretization of a 3D
porous layer subjected to a free convection process. In
comparison with 2D, where it has been found*® about
10,000 nodes are required to accomplish satisfactorily
accurate results for the Elder problem, the chosen 3D
resolution seems to be a minimum for this class of
problems. Time marching is based on a predictor-cor-
rector strategy with an automatic time step control
embedded in a one-step full Newton method. For the
present examples more than 600 intrinsic time steps are
required for simulating a 3D convection process with a
duration of about 20 years for a convergence tolerance

y of 10°.

It becomes clear that a long-term analysis of 3D free
or thermohaline convection takes a large numerical
effort and is normally a time-consuming task. While a
2D simulation is still on the order of hours of CPU
time, a 3D problem can take days of runtime on a
workstation. However, by using a high-speed worksta-
tion available today the 3D Elder problems and the
Bénard convection could be solved in one day and two
days of runtime, respectively. It should be taken into
consideration that the FEFLOW code is general and
not streamlined, for instance, for special cases of free
convection in rectangular domains with homogeneous
parameters. That means the impact and the found
efforts are representative for general problems having
an arbitrary geometry and permitting such parametric
and boundary conditions which are required in actual
site-specific applications'®.
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Appendix A

Weak form of the continuity equation
(17-1)

The weak form of the continuity equation (17-1)
gives
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Introducing the Darcy equation (17-2) into eqn (17-1)
and taking into account that the buoyancy term leads to

A
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by using the fluid density equation of state (17-5), fol-
lowing final weighted residual formulation of the con-
tinuity equation results
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where the extended Boussinesq approximation term
(17-7) is incorporated. Equation (A3) represents the
standard weak form of the substitution formulation to
solve the hydraulic head 4.

Weak form of the Darcy equation (17-
2)

Formally, a weak form of the Darcy equation can
easily be derived as

oh
[wd} =-[ WK, fy = (A4)
Q Q J
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to solve the vector of Darcy fluxes q/: at given A, C and
T.

(A3)
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Weak form of the mass transport equa-
tions (17-3)

The weak formulations for the divergent and con-
vective forms of the contaminant mass conservation
equations differ from the fact that for the former the
divergence theorem is applied both to the convective
and the dispersive terms

gj}w—(q? ,,a>—fj( ,,6 (A3)

0
+ W(Cq{_DUa?C)ni
J

total
nc

while the conventional convective form applies the
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divergence theorem only to the dispersive (2nd order)
term

oc
-[ 6x< ’/8x - _-[ ”6 +J‘W D’fﬁ_n (A6)
Q N
dis,
_qnc P
Finally, it yields the following weak formulations
w
f Rdat Ia qic+ j Dlja—+j wRSC (A7)
total
= J.WQC Iw
for the divergent form and
oC 6C
IwR@ﬂ qfax D,,a—+j W(R9+0,)C  (AS)
_ ijC J‘qump
Q r

for the convective form, respectively, to solve the con-
centration C.

Weak form of the heat transport equa-
tion (17-4)

Similar to the above, the weak formulation of the
convective form of the heat transport equation is given
by

IW[Spfcfﬂl w)p“c“]a—“IWpfch‘fa—T (A9)
5 ot 0x;

6W _ cond
IS ijT [d;

Q T

for solving the temperature 7.

Finite element formulations

Employing the Galerkin version of the FEM
(GFEM), w N,, , for the above weak formulations
and replacmg the 4, qf C and T variables by their trial
approximations

h(xp 0 =h(x, 1) = SN, (5)h, (1)
D28 ) = TN, () (1)
m (A10)

Clx, 1) = Clx, 1) = 3N, () C,h (1)

T(x, 1) = T(x,, 1)

= 3N, ()T, ()

the matrix coefficients of eqn (17-8) are as follows:

ISO N, = [NN, P = [RN,N,
o o (A1)

Upy = [[e6/+ (1= 0)p"¢ IV,
Q

ON,, 0N,

jz% o (A12)



N, ., oN,, N, _
D,, = I[ T‘LNN’D B—'T +R9N,,1N,,} divergent form
° (A13)
p = (Iy ~ON, wp DN ON,,0N,, Ny, rg+ NN ive f
J‘[ mdi 7T o, ii 0x 0 ( O,)N,, ”} convective form

Q

b = [Vl j%’zﬁ%%} (A14)
Q
ON,,
o /H[(C o€ C-BT-T)g
J.m‘/((c &C)gf ng (A15)

J.N ((c &C)afﬁajj J.qu"/ IN %

191.,,,=7J'1v,,11<l,fHa J‘NmK,}f (€=C)=B(T-T,) e, (A16)

[(C C,)

mq ne
o (A17)
Ry = [N, 0c— [N,q"

J.Nch IN total divergent form

convective form

Wy = [NuOr= [Na™ (A18)
Q r

Appendix B

Global smoothing of discontinuous
velocity fields

A global approximation of the smoothed Darcy
velocities can be written as

qix) = 3N () (B1)

Assume that we have an unsmoothed (discontinuous)
velocity field q{*(xi) , then the smooth function which
provides a best fit in the least squares sense over the
domain Q can be obtained from a minimization of the
functional

2
7= [(gl=¢") = min (B2)
Q

The minimalization procedure

= [2(4]- 4 )——q-(fo for m=12. (B3
6qtm Q aq{m

or

j N, (dj-d) =0 (B4)

results in a system of linear equations to solve the
smoothed velocities qf viz.,

sznq/ifn = Zim (BS)

where M, represents the mass matrix and Z,,, is the
RHS involving the unsmoothed relations. They are
formed in the finite element assembling procedure as
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M,, = [N,N

'V (B6)
Q

and, by inserting the Darcy velocity components, as
= [N,d" (B7)
Q n
_ oh o
“INm[Kiffu(axj [(c C)(c C,)-B(T- T)} ﬂ
Q

Note, the least square approximation of global smooth-
ing (B7) is equivalent to the Galerkin weighting proce-
dure (A16) in Appendix A.

A cost-effective alternative appears if the mass
matrix M, is lumped by an row-sum or diagonal scal-
ing

_[Nm(an) m n
Q m # n

0

(B®)

mn

without need to solve the linear equation system (BY).
Mass lumping can be shown to be equivalent to an
area-weighted averaging for nodal values.

Local smoothing of discontinuous
velocity fields

Unlike global smoothing, there is an efficient way
to smooth velocity fields by using only individual ele-
ment information. This is termed as local smoothing*
and provides a simple nodal averaging based on the

number of elements joined at a given node (element
patch). Among several approaches suggested
FEFLOW employs following two-step local technique:

(Step 1) The discontinuous velocity in each element e

-

(B9)

on’
B Kiffu[a_xj

+[(C7C)(c —C)-B(I - T)}j

is computed at the Gauss points p (2 x 2 (x 2) for linear
and 3 x 3 (x 3) for quadratic elements) with given
appr0x1mat10ns of the hydraulic head h° , concentration
C°, and temperature 7° for element e from previous
solutlons.

(Step 2) The values at the Gauss points are assigned to
the nearest corner node p — m. Each nodal contribu-
tion is summed up and, at the end, the nodal values are
averaged by their number of nodal contributions n,
from the patch sharing the node m

}/np

(B10)

patch
qlm - [Z im



APPENDIX C

Auxiliary problem formulation used for
budget flux computation of the con-
vective part

The budget analysis aims at the computation of the
normal  convective mass (or heat) fluxes

= ZI(C 4y) . Multiplying each term of the continuity

equation (17-1) by concentration C we get the weak
form

oq,

i ah
jwca = [wC(0,+ 0pp) - jwcsoa (Cl)
Q Q Q

It is further

G(Wc%f)f 0w qf aC
o, *qua * C~ q{ax

1

(€2)

Employing the divergence theorem on the LHS of
identity (C2) we obtain from (C1) and (C2)

| wCq/n. J’ cawqf J’ (C3)
r
+ ij(Qp + Opp) ijSU%

Q Q

It has been found to evaluate the individual terms of
eqn (C3) in different ways. While the velocity qlf in the
first term of the RHS is expressed by the Darcy law, the
second RHS term uses explicitly the velocity from the

computation. The LHS surface integral describes
already the desired convective mass flux along the
boundary portion I', where 4 - ani‘R is the normal
fluid flux and 4; - Cani‘R = Cq,, is the normal convec-
tive mass flux through the boundary.

Finally, following finite element formulation results
to compute the normal convective mass flux from
given solutions (A10) of hydraulic head h , Darcy flux
q/ concentration C, and temperature T

ON ON
ijqu | Kfy s 5 (N Ch,
r Q P
ON p
JRAGENC) et BT T) g
N (C4)
+jN( )(qufij( N,C(0,+ )

ohy
e (v
Q

All contributions of mass flux are summed up at node
m to obtain the lumped nodal balance mass flux Qlé in
the form

¢ Jae- —ZJ i ()

which is defined positive inward and will be used for
the boundary constraint control (see Section 17.6).
Similar expressions to (C4) and (C5) can be derived for
heat balance fluxes if p T is used as multiplier.
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